首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The objective of this study is to simulate three-dimensional behavior of shipping water and to predict the impact pressure on the deck using a particle method. An experiment carried out in a two-dimensional wave tank with a fixed deck model was numerically analyzed in three dimensions. The fluid motion, the surface elevation, and the impact pressure on the deck were compared between the experiment and the calculation and good agreement was obtained.  相似文献   

2.
The wave diffraction and radiation problem is studied numerically by using a higher-order boundary element method. The convergence of the higher-order boundary element method is tested systematically for bodies of different shapes. For the second-order force, particular attention is paid to the contribution of the second-order potential, following the line of Molin's approach. For numerical evaluation, the free surface is divided into three subregions; inner, intermediate and outer ones. In the inner region, the integral is evaluated numerically by using higher-order boundary elements. In the intermediate region, semi-analytic form is constructed with the help of eigen functions. In the outer domain, the analytic solution is available. This subdivision scheme reduces the numerical burden remarkably.  相似文献   

3.
改进的移动粒子半隐式法模拟楔形体入水砰击   总被引:1,自引:0,他引:1  
余谦  张怀新 《海洋工程》2013,31(6):9-15
移动粒子半隐式法(Moving-Particle Semi-Implicit Method,MPS)是一种新的基于拉格朗日(Lagrange)理念的无网格方法,适用于模拟自由液面的大变形和水流的喷射现象。用基于大涡模拟的改进MPS法首先模拟了矩形体的入水砰击,砰击压力的计算结果证明了这种方法的正确性,然后模拟了楔形体的匀速入水砰击,并与实验结果进行了对比,验证了大涡模拟改进MPS法在砰击问题中的适用性。  相似文献   

4.
A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry is presented in this paper. In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse are stored and analyzed by the fast Fourier transform technique (FFT) and energy spectrum curves for each location are obtained. The frequencies of each mode of free oscillations are determined from the peaks of the spectrum curves. The method is tested by using regular shaped flat bottom basins with different depths. The computed periods of free oscillations are compared with the theoretical values. The accuracy and performance of the method are discussed. As a case study for the application to the basins of irregular shape and bathymetry, the periods of free oscillations of the sea of Marmara is determined and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号