共查询到20条相似文献,搜索用时 10 毫秒
1.
为了解决振动水柱式波浪能转换装置收集多向波浪问题,本文设计了半球形多向聚合波道振荡水柱气室结构,以适合远海单点波浪能采集和发电。在规则波正向入射条件下,基于流体仿真分析软件(FLUENT)、流体动力学连续性假设和粘性不可压缩流体动量守恒的运动方程(Navier-Stokes方程)建立半球形振荡气室和三维数值波浪水槽模型。仿真结果表明:增设气室后壁,合理设计波道开口角度实现多向迎波捕获波浪能,优化前壁形状可降低波浪触底反射带来的能量耗散,同时提高了气室内空气压强和出气口速度,有效提升波浪能俘获效率,为后续发电的二次能量转换提供高效的空气动力。 相似文献
2.
The motion and the drift force of a floating OWC (oscillating water column) wave energy device in regular waves are studied taking account of the oscillating surface-pressure due to the pressure drop across the duct of the air chamber. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine-type Green function while the outer problem with the Kelvin-type Green function. The added mass, wave damping and excitation coefficients as well as the motion and drift force of the OWC device are calculated for various values of parameter related to the pressure drop. 相似文献
3.
The boundary-element method has been widely used as a design tool in the offshore and ship building industry for more than 30 years. Its application to wave energy conversion is, however, more recent. This is the second of two papers on a comparison of numerical and physical modelling of a free-floating sloped wave energy converter. In the first paper the numerical modelling formulation for the power take-off mechanism was derived using the boundary-element method package WAMIT. It was verified against numerical benchmark data. In this paper, the outcome of the modelling of the whole device is compared with experimental measurements obtained from model testing in a wave tank. The agreement is generally good. 相似文献
4.
Understanding the hydrodynamic interactions between ocean waves and the oscillating water column (OWC) wave energy converter is crucial for improving the device performance. Most previous relevant studies have focused on testing onshore and offshore OWCs using 2D models and wave flumes. Conversely, this paper provides experimental results for a 3D offshore stationary OWC device subjected to regular waves of different heights and periods under a constant power take–off (PTO) damping simulated by an orifice plate of fixed diameter. In addition, a 3D computational fluid dynamics (CFD) model based on the RANS equations and volume of fluid (VOF) surface capturing scheme was developed and validated against the experimental data. Following the validation stage, an extensive campaign of computational tests was performed to (1) discover the impact of testing such an offshore OWC in a 2D domain or a wave flume on device efficiency and (2) investigate the correlation between the incoming wave height and the OWC front wall draught for a maximum efficiency via testing several front lip draughts for two different rear lip draughts under two wave heights and a constant PTO damping. It is found that the 2D and wave flume modelling of an offshore OWC significantly overestimate the overall power extraction efficiency, especially for wave frequencies higher than the chamber resonant frequency. Furthermore, a front lip submergence equal to the wave amplitude affords maximum efficiency whilst preventing air leakage, hence it is recommended that the front lip draught is minimized. 相似文献
5.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range. 相似文献
6.
This paper provides a linear solution for the Wave Rotor, a wave energy device that comprises two parallel counter rotating cylinders in orbital motion. Theoretical results are obtained for the radiated waves generated by the device, and for its efficiency. Comparisons with earlier measurements of radiated waves show very promising agreement. 相似文献
7.
The hydrodynamic performance of the oscillating water column type shoreline-mounted wave-power device is numerically studied within linear wave theory by using a boundary element method based on the Wehausen and Laitone 3D shallow water Green's function. In order to verify the numerical model, a 1:12 physical model with different bottom slopes was constructed and tested in a wave basin under regular wave conditions. The effects of the bottom slope on the hydrodynamic performance are investigated by both analytical and experimental methods. 相似文献
8.
为解决海洋监测微型传感器供能问题,设计新型波浪能捕获装置,在海面振荡浮筒气室产生空气气柱,驱动介电弹性体形变发电为传感器供能。建立振荡浮子式气柱数值模型,研究新型振荡水柱发电计算理论。利用水动力仿真软件AQWA求解浮子所受波浪力作用振荡幅值、辐射阻尼和附加质量。基于Simulink软件分别计算波浪作用下浮子位移和气室内水柱位移,根据两者的位移差计算气室体积变化所产生的空气压强、介电弹性体发电薄膜形变量和系统输出电能,单次循环周期最大发电量达到24.6 mJ。分析波浪周期、发电薄膜几何参数等对输出电能的影响。 相似文献
9.
The dynamics of a damaged ship in waves is a complex phenomenon regarding fluid and structure interactions. Flooded water motions in the damaged compartment could be influenced by decks, obstructions and obstacles in the compartment. This becomes particularly relevant in case of flooding in the engine room that is usually characterized by the presence of large objects such as engines and machineries. In such cases the possibility to better understand the behavior of a damaged ship, influenced by the fluid and structure interactions, could provide novel outcomes and thus enhance the damaged ship safety.In this paper an experimental campaign is conducted on a passenger ferry hull. The effects of obstacles in the engine room compartment, such as decks and engines, on ship roll responses, are studied. Roll decay in still water and steady roll responses in beam regular waves at zero speed are measured for the empty compartment and for the compartment with obstructions, as defined above.The main outcomes from the conducted experiments disclose a mitigation of the resonant behavior of the coupled system, ship with damaged compartment, by having engine shapes occupying the flooded engine room. Moreover it is possible to observe how the resonant frequency of the ship modifies having a more realistic arrangement of damaged compartment and how motion RAOs and roll decay characteristics modify accordingly. 相似文献
10.
The wave power extraction by a cylindrical oscillating water column (OWC) device with a quadratic power take-off (PTO) model was studied experimentally and theoretically. In the experiment, a scaled model OWC was tested in a wave flume, with an orifice being used to simulate a quadratic PTO mechanism. In the theoretical analysis, the quadratic PTO model was linearized based on Lorenz's principle of equivalent work, which allows us to perform a frequency domain analysis using an eigen-function matching method. The effects of higher harmonic components and the spatial non-uniformity of the surface velocity inside the chamber were discussed. A semi-analytical model was proposed to understand the viscous loss affecting the measured capture length. Our treatment of the quadratic PTO model was validated by comparing quasi-linear theoretical capture length and the laboratory measurement. Our results also showed that the effects of spatial non-uniformity and viscous loss could be noticeable for shorter waves. 相似文献
11.
通过模型试验研究,得到海岸岸坡、气室宽度与频率响应和吸能效率之间的关系和规律,验证了一种理论计算方法的可靠性,证明该计算方法对波能电站的设计和工程选址有一定的参考价值。 相似文献
12.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations. 相似文献
13.
空气透平的压降作用及由其带来的空气流速变化,是串联2次能量转换过程、实现两转换过程耦合的核心要素.试验主要是在物理模型的基础上,对带有冲击式透平的OWC装置能量转换影响因素进行研究.试验主要考察2次能量转换耦合作用下,气室内自由水面变换、气室内压强变化、输气管内空气流速变换及三者耦合与相互作用. 相似文献
14.
Numerical investigation on the dynamics of a vertical wall defenced by an offshore breakwater 总被引:1,自引:0,他引:1
The numerical and experimental investigations on the performance of an offshore-submerged breakwater in reducing the wave forces and wave run-up on vertical wall are presented. A two-dimensional finite-element model is employed to study the hydrodynamic performance of the submerged breakwater under the action of regular and random waves. The numerical prediction has been supported with experimental measurements. The wave forces and wave run-up on the vertical wall were measured for different breakwater configurations. The applicability of linear theoretical model in the prediction of wave forces on the wall by a submerged breakwater has been discussed. 相似文献
15.
Phase control may substantially increase the power absorption in point-absorber wave energy converters. This study deals with validation of dynamic models and latching control algorithms for an oscillating water column (OWC) inside a fixed vertical tube of small circular cross-section by small-scale testing. The paper describes experimental and numerical results for the system's dynamics, using simple and practical latching control techniques that do not require the prediction of waves or wave forces, and which will be relevant to any type of point-absorbing devices.In the experimental set-up, the upper end of the tube was equipped with an outlet duct and a shut-off valve, which could be controlled to give a latching of the inner free surface movement. The pressure drop through the open valve is used as a simplified measure of the energy extraction. The control was realized by using the real-time measurement signals for the inner and outer surface displacement.A mathematical model of the system was established and applied in numerical simulation. In the case the OWC's diameter is much smaller than the wavelength and the wave amplitude much smaller than the draft, the free surface movement inside the tube can be described as an oscillating weightless piston. For this hydrodynamic problem an analytical solution is known. In addition, the mathematical model includes the effects of viscous flow losses, the air compressibility inside the chamber and the pressure drop across the valve. Experimental results were used to calibrate some of the model parameters, and the total model was formulated as a coupled system of six non-linear, first-order differential equations. Time-domain integration was used to simulate the system in order to test the control strategies and compare with experimental results. 相似文献
16.
摇板式波浪能转换装置具有频率响应范围广、可靠性好、常规海况下转换效率高、建造成本低等优点。基于势流理论建立具有沉箱基础的摇板式波浪能装置水动力性能的解析解。将解析结果与文献中已有结果和边界元数值结果进行了对比,验证了解析解求解过程的正确性。通过算例分析,研究了波浪入射频率、沉箱基础高度、沉箱基础宽度、摇板位置、摇板厚度和摇板密度对装置能量俘获效率的影响。研究结果表明:采用合适高度的沉箱基础能显著提升装置性能;长波海况下,摇板铰接在沉箱基础背浪侧上表面时装置性能更佳,而短波海况下,摇板铰接在沉箱基础迎浪侧上表面更为合理;沉箱基础宽度的推荐值为0.5到1.0倍水深;适当减小摇板厚度能够提升装置性能;应优先选用密度较大的摇板。 相似文献
17.
提出了一种带纵摇前墙的新型振荡水柱式波浪能(OWC)装置,借助Open FOAM开源代码平台和waves2Foam工具包,数值模拟研究带纵摇前墙OWC装置的水动力性能和转换效率。主要研究前墙吃水d_1、前墙密度ρ、后墙吃水d_2、旋转约束力(用无量纲弹簧系数K表示)对该装置的反射系数C_r、透射系数C_t、耗散系数C_d和波能转换效率ξ的影响规律。结果表明,纵摇前墙能有效减少能量耗散,提高波能转换效率ξ;无量纲弹簧系数K对装置转换效率的影响主要集中在短波区域,且在K为0时装置具有最大的转换效率和最宽的高效频率带;前墙的密度和吃水深度对水动力系数影响不大;后墙的吃水深度对水动力系数影响较大,增加吃水深度能有效提高装置对于中短波和中长波段的波能转换效率,但对系统整体的能量耗散系数影响不大。 相似文献
18.
Wave tank tests were carried out to evaluate the total efficiency of a floating OWC Pentagonal Backward Bent Duct Buoy (PBBDB). Two kinds of turbine generators were used in tests. The incident wave power, pneumatic power and electricity were measured. The test results show that the primary efficiency can reach up to 185.98% in regular waves and 85.86% in irregular waves. The total efficiency from wave to wire with Wells turbine-generator set is 33.43% in regular waves and 15.82% in irregular waves. The peak total efficiency of the PBBDB with check valves equipped with the impulse turbine-generator set is 41.68% in regular waves and 27.10% in irregular waves. The efficiency of the turbine-generator set is about 30% in the tests. Obviously, the total efficiency can be further improved with the increasing of turbine efficiency. 相似文献
19.
A novel concept catamaran equipped with a suspended cabin, named Wave Harmonizer Type 4 (WHzer-4), is proposed and evaluated. The mass-spring-mass system is constructed by mounting four sets of suspensions in-between the cabin and the twin-hull. Two sets of dual motor/generators (M/Gs) are attached on the center beam of the cabin's deck fore and aft. Each shaft-end of the dual M/Gs is connected to the twin-hull through a rack-pinion gear unit. In this way the vertical relative motion between the cabin and the twin-hull can be transferred into the rotational motion of the M/Gs, and vice versa. A semi-active motion control system, which contains a proportional-integral (PI) controller, is designed and applied to each of the dual M/Gs for the aim of absorbing wave energy under the condition of suppressing the local vertical velocity of the cabin as much as possible. A 1/5 scale model ship with a length of 1.6 m is built, and a forced-oscillation bench test is implemented to validate the performance of the control system. Then, a series of towing tank tests is carried out in regular head waves. The heave and pitch responses of the cabin, those of the twin-hull and the corresponding wave energy capture width ratio (CWR) at five control scenarios and two reference scenarios are investigated. Discussion on the results of the tank test shows that the motion reduction of the cabin and the wave energy harvesting can be achieved simultaneously at a few wave conditions. However, at other conditions, although noticeable amount of wave energy is harvested, motion reduction of the heave and pitch of the cabin could not be obtained at the same time. It is suggested that varying the gain settings of the PI controllers according to the location of the controllers may improve the effectiveness of the proposed control system. 相似文献