首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Underwater acoustic transient signals are generated mechanically at known positions along a wharf. These signals are received by a wide aperture planar array of four underwater acoustic sensors, whose positions relative to the wharf are unknown. A method is described that enables the positions of the sensors to be estimated from accurate differential time-of-arrival measurements (with 0.1 /spl mu/s precision) as the signal wavefronts traverse the array. A comparison of the estimated positions with the nominal positions of the first three sensors, which form a 20-m-wide aperture horizontal line array, reveals a 2-cm displacement of the middle sensor from the line array axis. This slight bowing of the line array results in overranging (bias error of 3%) when the wavefront curvature method is used with the nominal collinear sensor positions to locate a static source of active sonar transmissions at a range of 59.2 m. The use of the spherical intersection method coupled with the estimated sensor positions of the line array provides an order of magnitude improvement in the range estimate (within 0.3% of the actual value). However, systematic ranging errors are observed when the sound propagation medium becomes nonstationary. Next, the differences in the arrival times of the direct path and boundary-reflected path signals at the middle sensor of the wide aperture line array are estimated using the differential phase residue of the analytic signal at the sensor output. These multipath delays are used to estimate the range and depth of the source. Although the average value of the multipath range estimates is within 0.5% of the actual value, the variance of the range estimates is 50 times larger when compared with the results of the spherical intersection and wavefront curvature methods. The multipath delay data are also processed to provide a reliable estimate of the temporal variation in the water depth enabling the tidal variation to be observed.  相似文献   

2.
Short acoustical signals like those caused by explosions will in a waveguide split into mode arrivals. If the distance is long enough, they can at the receiver be resolved in time with appropriate narrowband filters. They can simultaneously be resolved in vertical angle (incidence-) with an endfire array and a beamformer. Combined in a beam-time diagram the arrivals will line up along a straight line. The slope of this line is invariant with frequency, mode indexes, source and receiver depths. It can conveniently be linked to the so-called waveguide invariant /spl beta/. An alternative approach to /spl beta/ is to compute it from the bathymetric profile. This is valid for range variable waveguides under adiabatic conditions, constant water sound speed over a harder bottom, and small grazing angles. Together these two approaches to /spl beta/ can be combined in a formula, where direct range determination is the end product. The applicability of the method is demonstrated on data from an experiment at sea. An 820-m array with 10 hydrophones was deployed at the bottom in 320-m water depth. For two endfire runs in opposite directions, small explosive charges out to 115 km were used as sound sources. Typical range estimation errors were 5-10%.  相似文献   

3.
This paper examines the effectiveness of horizontal line arrays (HLAs) for matched-field inversion (MFI) by quantifying geoacoustic information content for a variety of experiment and array factors, including array length and number of sensors, source range and bearing, source-frequency content, and signal-to-noise ratio (SNR). Emphasis is on bottom-moored arrays, while towed arrays are also considered, and a comparison with vertical line array (VLA) performance is made. The geoacoustic information content is quantified in terms of marginal posterior probability distributions (PPDs) for model parameters estimated using a fast Gibbs sampler approach to Bayesian inversion. This produces an absolute, quantitative estimate of the geoacoustic parameter uncertainties which can be directly compared for various experiment and array factors.  相似文献   

4.
Simulation-based evaluations of HF radar ocean current algorithms   总被引:1,自引:0,他引:1  
A computer simulation is used to analyze errors in high-frequency (HF) radar ocean surface current measurements. Two pointing algorithms used for current extraction, a direction finding approach using MUltiple SIgnal Characterization (MUSIC) developed by Schmidt (1986), and conventional beam forming, are compared in terms of the effect of variations in sea state parameters on current measurement error. The radar system parameters used in the simulation were taken from the University of Michigan's multi-frequency coastal radar (MCR), which operates on four frequencies from 4.8 to 21.8 MHz and employs an eight-element linear phased array for its receive antenna. Results show MUSIC direction finding to be applicable to phased array systems and to have a better sensitivity to sharp current features, but larger random error than traditional beam forming methods. Also, for cases where beam forming errors are dominated by beam width or low signal to noise ratio, results show MUSIC to be a viable alternative to beam forming  相似文献   

5.
Calibrated acoustic measurements were made under calm sea state conditions on the New Jersey shelf near the AMCOR 6010 borehole, a surveyed area with known geophysical properties. The experiment was conducted in 73 m water with supporting measurements of salinity, temperature, and sound speed. Acoustic measurements were obtained with a vertical array of 24 hydrophones spaced equally at 2.5 m intervals; one of which was near the bottom. A source towed at 1/2 the water depth transmitted one of two sets of four tones spaced between 50 and 600 Hz for each run to ranges of 4 and 26 km. The data were processed with both a Hankel transform and a high resolution Doppler technique to yield horizontal wave-number spectrum at several depths. Results were obtained along both constant and gradually varying depth profiles. Similar modal interference patterns were observed at the lower frequencies. The constant depth-profile radial results were compared to calculations performed with several shallow water acoustic models using geoacoustic profiles derived from geophysical parameters and shear wave inversion methods  相似文献   

6.
In April 1994, coherent acoustic transmissions were propagated across the entire Arctic basin for the first time. This experiment, known as the Transarctic Acoustic Propagation Experiment (TAP), was designed to determine the feasibility of using these signals to monitor changes in Arctic Ocean temperature and changes in sea ice thickness and concentration. CW and maximal length sequences (MLS) were transmitted from the source camp located north of the Svalbard Archipelago 1000 km to a vertical line array in the Lincoln Sea and 2600 km to a two-dimensional horizontal array and a vertical array in the Beaufort Sea. TAP demonstrated that the 19.6-Hz 195-dB (251-W) signals propagated with both sufficiently low loss and high phase stability to support the coherent pulse compression processing of the MLS and the phase detection of the CW signals. These yield time delay measurements an order of magnitude better than what is required to detect the estimated 80-ms/year changes in travel time caused by interannual and longer term changes in Arctic Ocean temperature. The TAP data provided propagation loss measurements to compare with the models to be used for correlating modal scattering losses with sea ice properties for ice monitoring. The travel times measured in TAP indicated a warming of the Atlantic layer in the Arctic of close to 0.4°C, which has been confirmed by direct measurement from icebreakers and submarines, demonstrating the utility of acoustic thermometry in the Arctic. The unique advantages of acoustic thermometry in the Arctic and the importance of climate monitoring in the Arctic are discussed. A four-year program, Arctic Climate Observations using Underwater Sound is underway to carry out the first installations of sources and receivers in the Arctic Ocean  相似文献   

7.
In October 1997, the EnVerse 97 shallow-water acoustic experiments were jointly conducted by SACLANT Centre, TNO-FEL, and DERA off the coast of Sicily, Italy. The primary goal of the experiments was to determine the sea-bed properties through inversion of acoustic data. Using a towed source, the inversion method is tested at different source/receiver separations in an area with a range-dependent bottom. The sources transmitted over a broadband of frequencies (90-600 Hz) and the signals were measured on a vertical array of hydrophones. The acoustic data were continuously collected as the range between the source and receiving array varied from 0.5 to 6 km. An extensive seismic survey was conducted along the track providing supporting information about the layered structure of the bottom as well as layer compressional sound speeds. The oceanic conditions were assessed using current meters, satellite remote sensing, wave height measurements, and casts for determining conductivity and temperature as a function of water depth. Geoacoustic inversion results taken at different source/receiver ranges show sea-bed properties consistent with the range-dependent features observed in the seismic survey data. These results indicate that shallow-water bottom properties may be estimated over large areas using a towed source fixed receiver configuration  相似文献   

8.
An inversion method using a towed system consisting of a source and two receivers is presented. High-frequency chirp signals that have been emitted from the source are received after multiple penetrations and reflections from the shallow water sub-bottom structure and are processed for geoacoustical parameter estimation. The data are processed such that a good resolution and robustness is achieved via matched filtering, which requires information about the source signal. The inversion is formulated as an optimization problem, which maximizes the cost function defined as a normalized correlation between the measured and modeled signals directly in the time domain. The very fast simulated reannealing optimization method is applied to the global search problem. The modeled time signal is obtained using a ray approach. An experiment was carried out in the Mediterranean Sea using a towed source and receiver system. The inversion method is applied to the experimental data and results are found to be consistent with previous frequency-domain analyses using measurements from a towed horizontal array of receivers and measurements on a vertical array.  相似文献   

9.
Acoustic propagation in shallow water is greatly dependent on the geoacoustic properties of the seabottom. This paper exploits this dependence for estimating geoacoustic sediment properties from the bottom acoustic returns of known signals received on a hydrophone line array. There are two major issues in this approach: one is the feasibility of acoustic inversion with a limited aperture line array, the other is related to the knowledge of the geometry of the experimental configuration. To test the feasibility of this approach, a 40-hydrophone-4-m spaced towed array together with a low-frequency acoustic source, was operated at a shallow water site in the Strait of Sicily. In order to estimate the array deformation in real time, it has been equipped with a set of nonacoustic positioning sensors (compasses, tilt-meters, pressure gauges). The acoustic data were inverted using two complementary approaches: a genetic algorithm (GA) like approach and a radial basis functions (RBF) inversion scheme. More traditional methods, based on core sampling, seismic survey and geophone data, together with Hamilton's regression curves, have also been employed on the same tracks, in order to provide a ground truth reference environment. The results of the experiment, can be summarized as follows: 1) the towed array movement is not negligible for the application considered and the use of positioning sensors are essential for a proper acoustic inversion, 2) the inversion with GA and RBF are in good qualitative agreement with the ground truth model, and 3) the GA scheme tends to have better stability properties. On the other hand, repeated in version of successive field measurements requires much less computational effort with RBF  相似文献   

10.
Two new types of mechanism for the generation of tidal residual flow are revealed with the use of a hydraulic model experiment. A remarkable anticlockwise tidal residual circulation is formed in a model bay due to the presence of a tidal current, the Coriolis force and a horizontal boundary. A similar circulation is also formed due to the presence of a bottom slope, a horizontal boundary and a tidal current which flows normal to the inclination of the bottom slope. The residual circulation in the Sea of Iyo in the Seto Inland Sea is considered to be due to a combination of the effects of the Coriolis force, a bottom slope, a horizontal boundary and the tidal current. We classified some of the generation mechanisms of tidal residual flow which have been described to date into seven types on the basis of vorticity considerations.  相似文献   

11.
When a steep bottom slope exists, it is well known that conventional methods for calculating horizontal diffusion in sigma-coordinate coastal ocean models causes spurious transport (e.g. salinity, temperature, and sediments) and currents. In this study, a second-order accurate finite-difference algorithm and program have been developed to reduce the spurious numerical diffusion errors. In the proposed algorithm, the finite differencing is performed in the x-z coordinate system to approximate the horizontal gradient. Each variable in the finite differential formation is calculated in the sigma-coordinate grid cells using a second-order Lagrangian interpolation polynomial. In conjunction with a stepwise bottom boundary condition, numerical experiments show that the proposed finite-difference scheme considerably reduces numerical errors compared to conventional approaches when dealing with horizontal diffusion over steep topography, which often occurs in coastal oceans and navigation channels.  相似文献   

12.
数值模拟结果表明: 冬季长江口及其邻近海区温度分布为近岸低, 外海高; 近岸和海底地形变化缓慢区温度呈垂直均匀分布, 海底地形变化显著的陡坡区生成温度锋; 外海深水区的中上层温度低且呈垂直均匀分布, 底层温度高并形成弱的分层。春季, 近岸温度高、外海低; 近岸温度大致呈垂直均匀分布, 外海出现明显分层; 长江口以北温度表层低、底层高; 长江口及其以南表层和底层温度低, 而中层高; 陡坡区至外海生成温度锋, 随着温度锋自陡坡至外海的下移,锋面以上温度逐渐变为垂直均匀分布, 而锋面以下温度却大致呈水平均匀分布。夏季, 海区的温度分布和春季一样, 为近岸高、外海低; 长江口及其以南近岸浅水区温度呈垂直均匀分布; 长江口以北和长江口及其以南的外海温度自表层至底层由高变低且大致呈水平均匀分布, 并在表层至次表层生成强温跃层, 跃层强度随水深增加迅速减弱, 深底层温度几乎呈均匀分布且保持低温特征。秋季, 海区的温度分布与冬季相同, 也为近岸低, 外海高; 在长江口以北, 近岸温度为表层高, 底层低; 外海底层温度低且大致呈水平均匀分布, 而底层以上温度高且大致呈垂直均匀分布; 长江口及其以南, 近岸温度呈垂直均匀分布, 陡坡至外海的表层至底层生成弱的温度锋,随温度锋自陡坡至外海的下移, 锋面以上温度逐渐变为垂直均匀分布, 长江口以南陡坡区的底层温度几乎呈均匀分布。  相似文献   

13.
Various parameters associated with the track of a stable CW source moving with constant velocity are estimated using synthetic aperture and Doppler processing techniques. These include the source frequency before Doppler distortion by its motion, the relative speed between the source and a constant velocity receiver, the range at closest approach to the source track, and the relative bearing to the source. Different processing techniques are suggested for a range of signal stabilities and observation times. Frequency analysis, or Doppler processing, supplements conventional synthetic aperture processing, and for relatively unstable signals a synthetic Doppler method is recommended. This method makes use of a rapid scan of signals from a succession of sensors in a horizontal line array to stimulate a higher speed motion of the array  相似文献   

14.
Determinations of acoustic scattering strength for sand bottoms have been made at several different shallow-water areas under downward refracting sound propagation conditions in the frequency decade below 1 kHz. The measurements have been made using explosive sources detonated at mid-water depth and bottom-mounted vertical and horizontal hydrophone line arrays as receivers. The ubiquitous presence of multipaths in shallow water prevents a direct-path scattering geometry, and scattering strength must be extracted from the full reverberation field, which complicates the determination of bottom grazing angle dependence of scattering. The major focus of this paper has been the variation of scattering strength with frequency (integrated over participating bottom angles), though estimates of the angular dependence of scattering strength have been made using the vertical receiving array. Typically the integrated scattering strength for sand bottoms reported (and elsewhere) are found to decrease below 1 kHz and in some instances to exhibit a minimum in the several hundred hertz range. Sand bottom scattering strengths below 1 kHz are significantly lower than those predicted by the Mackenzie formula and the limited angular dependence determinations have been found to be consistent with Lambert's law  相似文献   

15.
针对混响环境非自由声场中声源测量的问题,本文以消声水池和混响水槽为实验环境,以换能器辐射的声场为研究对象,以水听器阵列为测量前端,进行了混响环境非自由声场中声源对象的测量、分析和重构的实验研究。通过单层水听器阵列对非自由声场进行声压分布测量,并对测量结果作声波分离处理,将分离前后的声压分布和在消声水池中测量的声压分布进行比较,给出了声源频率为5 000 Hz和7 000 Hz时,声场重构的误差分析结果。结果表明,基于单层水听器阵列声压测量的声波分离方法,能够较精确地对混响环境中的声场进行重构。  相似文献   

16.
The maximum likelihood estimator of source amplitude, bearing, and frequency for a moving towed line array of equispaced elements is discussed. A two-dimensional search in equivalent phase and frequency variables is found to yield the best estimates of the unknown parameters. Application to a physical experiment and comparison with the Cramer-Rao bound verify the unity of the approach  相似文献   

17.
When a steep bottom slope exists, it is well known that conventional methods for calculating horizontal diffusion in sigma-coordinate coastal ocean models causes spurious transport (e.g. salinity, temperature, and sediments) and currents. In this study, a second-order accurate finite-difference algorithm and program have been developed to reduce the spurious numerical diffusion errors. In the proposed algorithm, the finite differencing is performed in the xz coordinate system to approximate the horizontal gradient. Each variable in the finite differential formation is calculated in the sigma-coordinate grid cells using a second-order Lagrangian interpolation polynomial. In conjunction with a stepwise bottom boundary condition, numerical experiments show that the proposed finite-difference scheme considerably reduces numerical errors compared to conventional approaches when dealing with horizontal diffusion over steep topography, which often occurs in coastal oceans and navigation channels.  相似文献   

18.
An active source electromagnetic sounding system for marine use   总被引:2,自引:0,他引:2  
Instrumentation has been developed for carrying out active source electromagnetic sounding experiments in the deep oceans. Experiments of this type are directly and uniquely sensitive to the presence of molten or partially molten material, to temperature structure and to the porosity of upper crustal rocks such as those that accommodate hydrothermal circulation systems. Electromagnetic sounding experiments therefore represent an extremely desirable addition to the existing range of geophysical techniques for studying geological processes in thermally, hydrothermally or magmatically active regions—for example, at oceanic spreading centres.The instruments can be operated in regions of rugged, unsedimented sea bottom terrain, and are designed for investigating the distribution of electrical conductivity within the oceanic crust and uppermost mantle. The instrumentation consists of a deep towed, horizontal electric dipole transmitter and a set of free-fall, sea bottom, horizontal electric field recording devices.The transmitter is a deep-towed instrument, which is provided with power from the towing ship through a conducting cable. The transmitter package is fitted with an integral echo sounder, which allows it to be towed safely a short distance above the seabed. Electromagnetic signals are transmitted from a neutrally-buoyant antenna array, which is streamed behind the deep tow.The sea bottom receiving instruments each consist of a recoverable package which contains the instrumentation and digital recording system, an acoustic release unit, four low-noise, porous electrodes arranged in two orthogonal, horizontal dipoles, and a disposable bottom weight.The instruments have been used at sea on three occasions. On their most recent use, active source signals were successfully recorded during an experiment to investigate crustal magmatism and hydrothermal circulation beneath the axis of the East Pacific Rise.  相似文献   

19.
Reverberation rejection with a dual-line towed array   总被引:1,自引:0,他引:1  
Low-frequency bottom reverberation from explosive sources was measured with a dual-line horizontal towed array during a 1991 system engineering trial. The receiver's parallel line arrays were processed coherently in order to unambiguously resolve the reverberation field in azimuth. Initial beamforming that assumed a straight-and-parallel array configuration led to poor or erroneous ambiguity resolution, suggesting the system was deformed significantly from the assumed shape. In the absence of reliable shape measurement data, the array shape was deduced acoustically using tow ship signals and the direct blast of an explosive source. The estimated shape was then used in a shape-compensated beamformer to produce azimuthally unambiguous estimates of the reverberation field. Backlobe rejection of more than 20 dB was attained for both direct blast and distant reverberation energy  相似文献   

20.
Estimates of the travel times between the elements of a bottom hydrophone array can be extracted from the time-averaged ambient noise cross-correlation function (NCF). This is confirmed using 11-min-long data blocks of ambient noise recordings that were collected in May 1995 near the southern California coast at an average depth of 21 m in the 150-700 Hz frequency range. Coherent horizontal wavefronts emerging from the time derivative of the NCF are obtained across the array's aperture and are related to the direct arrival time of the time-domain Green's function (TDGF). These coherent wavefronts are used for array element self-localization (AESL) and array element self-synchronization (AESS). The estimated array element locations are used to beamform on a towed source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号