首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the absence of damage by pests, diseases and weeds). Historic daily weather data from 13 sites in Western Europe were used as starting point.For potential production (optimal water) a 3 °C temperature rise led to a yield decline due to a shortening of the growing period on all locations. Doubling of the CO2 concentration caused an increase in yield of 40% due to higher assimilation rates. It was found that effects of higher temperature and higher CO2 concentration were nearly additive and the combination of both led to a yield increase of 1–2 ton ha-1. A very small CO2-temperature interaction was found: the effect of doubled CO2 concentration on crop yield was larger at higher temperatures. The inter-annual yield variability was hardly affected.When water was limiting crop-production effects of temperature rise and higher CO2 levels were different than for the potential production. Rise in temperature led to a smaller yield reduction, doubled CO2 concentration to a larger yield increase and combination of both led to a large yield increase (3 ton ha-1) in comparison with yields simulated for the present situation. Both rise in temperature and increase in the CO2 concentration reduced water requirements of the crop. Water shortages became smaller, leading to a reduction in inter-annual variability. It is concluded that when no major changes in precipitation pattern occur a climate change will not affect wheat yields since negative effects of higher temperatures are compensated by positive effects of CO2 enrichment.  相似文献   

3.
秋季北极海冰对中国冬季气温的影响   总被引:7,自引:0,他引:7  
利用海冰资料、中国地面气候资料、环流特征量资料及NCEP/NCAR再分析资料,研究了秋季北极海冰变化对中国冬季平均气温、日气温变率以及异常低温天气的影响。分析结果表明,秋季北极海冰异常偏多年中国冬季常为暖冬;异常偏少年中国冬季常为冷冬,且异常低温天气出现频率更高,常发生低温灾害事件。秋季北极海冰通过影响后期的北半球极涡、东亚冬季风和西伯利亚高压进而影响中国冬季的平均气温,且通过影响冬季异常强西伯利亚高压的出现频次,影响中国冬季异常低温天气的发生频次。合成分析结果表明,秋季北极海冰异常偏少年的冬季,中国以北亚欧大陆高纬度的偏北风较强,且中国及其以北的中高纬度地区空气异常偏冷,导致极地和高纬度的冷空气易向南爆发,造成中国冬季气温偏低,异常低温天气频发。  相似文献   

4.
5.
Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980–2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.  相似文献   

6.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

7.
基于第六次耦合模式比较计划(CMIP6),使用新一代全球模式BCC-CSM2-MR的历史试验和未来共享社会经济路径(SSPs)数据,依据Hadley中心的海表面温度和海冰密集度数据及NCEP/NCAR I再分析资料,评估了BCC-CSM2-MR模式对北极海冰及北极气候的模拟能力,并对未来变化进行了预估.结果表明:BCC...  相似文献   

8.
Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions.  相似文献   

9.
Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.  相似文献   

10.
Dai  Panxi  Gao  Yongqi  Counillon  Fran&#;ois  Wang  Yiguo  Kimmritz  Madlen  Langehaug  Helene R. 《Climate Dynamics》2020,54(9):3863-3878
Climate Dynamics - The version of the Norwegian Climate Prediction Model (NorCPM) that only assimilates sea surface temperature (SST) with the Ensemble Kalman Filter has been used to investigate...  相似文献   

11.
在全球气候变暖背景下,北极海冰呈现出逐年消融的趋势.海冰的消融给北极的开发利用带来了重要机遇,例如北极航道通航潜力的显现.但北极航道开通还面临着诸多困难,尤其是海冰变化机理的复杂性和海冰预报的不确定性以及由此带来的航行安全风险.近年来,深度学习因其强大的非线性拟合能力,逐渐在海冰预报领域中崭露头角.本文对近年来深度学习...  相似文献   

12.
13.
With an increasing political focus on limiting global warming to less than 2 °C above pre-industrial levels it is vital to understand the consequences of these targets on key parts of the climate system. Here, we focus on changes in sea level and sea ice, comparing twenty-first century projections with increased greenhouse gas concentrations (using the mid-range IPCC A1B emissions scenario) with those under a mitigation scenario with large reductions in emissions (the E1 scenario). At the end of the twenty-first century, the global mean steric sea level rise is reduced by about a third in the mitigation scenario compared with the A1B scenario. Changes in surface air temperature are found to be poorly correlated with steric sea level changes. While the projected decreases in sea ice extent during the first half of the twenty-first century are independent of the season or scenario, especially in the Arctic, the seasonal cycle of sea ice extent is amplified. By the end of the century the Arctic becomes sea ice free in September in the A1B scenario in most models. In the mitigation scenario the ice does not disappear in the majority of models, but is reduced by 42 % of the present September extent. Results for Antarctic sea ice changes reveal large initial biases in the models and a significant correlation between projected changes and the initial extent. This latter result highlights the necessity for further refinements in Antarctic sea ice modelling for more reliable projections of future sea ice.  相似文献   

14.
Optimal CO2 control policy with stochastic losses from temperature rise   总被引:1,自引:0,他引:1  
In this paper, we present a new specification of warming cost and incorporate it into an integrated assessment model of global climate change. In the new specification, warming cost is represented as the product of possible large warming related welfare losses which occur with small probabilities that depend on the amount of temperature rise. This is in contrast to the conventional representation of warming cost as a deterministic function of temperature rise. To avoid curse of dimensionality problems, we assume that losses affect the utility of consumption without directly affecting consumption itself, and that the probability of losses occurring is independent of the number of losses that may have previously occurred. The results we obtain using this new approach depend importantly on the specification of the loss probability function. Nevertheless, our results are qualitatively similar to previous results obtained using a deterministic specification of warming cost, in which cost is a cubic function of temperature rise.  相似文献   

15.
During the field experiment ARKTIS 1993 ten cases of boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice in the Spitsbergen region were observed by aircraft over a distance ranging from about 50 km over the ice to about 300 km over the water. The modification depends decisively on the initial conditions over the ice, the boundary conditions at the bottom and top of the boundary layer and on the conditions of the large-scale flow. The modification of the bulk boundary-layer characteristics in relation to these conditions is presented.Besides the air-sea temperature contrast, the most important role for the boundary-layer modification is played by the stability on top of the boundary layer and by the divergence of the large-scale flow. According to the high variability of these conditions the observed boundary-layer modifications were very variable ranging from 100 to 300 m thick boundary layers with air temperatures between -32 and -22 °C over the ice to thicknesses between 900 and 2200 m and air temperatures between -15 and -5 °C after 300 km fetch over the open water. In most cases the large-scale flow was anticyclonic and divergent over the ice and changed to cyclonic and convergent over the water and an ice-sea breeze was superimposed on it.The sensible and latent heat fluxes are the dominant terms in the surface energy budget over the open water and ranged between 200 and 700 W m-2 whereas the net longwave radiation is the dominating term over the ice with the heat fluxes only about 10 W m-2.  相似文献   

16.
基于1951—2019年NCEP/NCAR再分析资料、Hadley环流中心海温、海冰密集度资料,通过合成分析和诊断温度异常方程,研究不同类型ENSO对初冬北极海冰的影响。结果表明,EP La Ni1a发展年初冬(11—12月),巴伦支—喀拉海海冰异常减少;CP La Ni1a发展初冬,巴伦支—喀拉海海冰异常增加。EP和CP型El Ni1o对初冬北极海冰的影响类似:格陵兰海海冰异常减少,而哈德逊—巴芬湾海冰异常增加。不同类型ENSO对初冬北极海冰的影响主要通过产生不同的大气遥相关,引起同期和前期的海表气温异常而实现。  相似文献   

17.
Scaling analysis shows that the mean thickness of an ice sheet depends on the product of two poorly known quantities, the ice viscosity and the net snow accumulation rate. We adjust the viscosity of an ice sheet in order to get a consistent value of this product for the present-day ice sheet volume and area given the net snow accumulation rate calculated by an atmospheric general circulation model (GCM). We then hold this artificial rheology constant in further numerical experiments. We hope that in doing so we can partially compensate for systematic GCM errors in simulating the snow accumulation rate, and, therefore, thickening/thinning of ice sheets will depend mostly on the tendency in the net accumulation change rather than on its absolute value. Using this approach, the response of the Greenland and Antarctic ice sheets to doubling CO2 concentration is simulated and the horizontal distribution of possible thickening/thinning of polar ice obtained. We find that, initially, the region of thickening ice is close to the area of increased snowfall rate, but later it significantly changes under the influence of internal ice flow dynamics. The sea-level changes predicted by our experiments agree with some empirical estimates. The sensitivity experiment with assigned basal sliding does not show significant changes in the large-scale ice topography, meaning, for example, that there is no indication of a possible disintegration of the West Antarctic ice sheet. At the same time, the regional thickening/thinning of ice (and consequently the sea-level change) depends strongly on processes at the ice sheet bottom.  相似文献   

18.
Based on the simulated ice thickness data from 1949 to 1999,monthly mean temperature data from 160 stations,and monthly mean 1 × 1 precipitation data reconstructed from 749 stations in China from 1951 to 2000,the relationship between the Arctic sea ice thickness distribution and the climate of China is analyzed by using the singular value decomposition method.Climate patterns of temperature and precipitation are obtained through the rotated empirical orthogonal function analysis.The results are as follows.(1) Sea ice in Arctic Ocean has a decreasing trend as a whole,and varies with two major periods of 12-14 and 16-20 yr,respectively.(2) When sea ice is thicker in central Arctic Ocean and Beaufort-Chukchi Seas,thinner in Barents-Kara Seas and Baffin Bay-Labrador Sea,precipitation is less in southern China,Tibetan Plateau,and the north part of northeastern China than normal,and vice versa.(3) When sea ice is thinner in the whole Arctic seas,precipitation is less over the middle and lower reaches of Yellow River and north part of northeastern China,more in Tibetan Plateau and south part of northeastern China than normal,and the reverse is also true.(4) When sea ice is thinner in central Arctic Ocean,East Siberian Sea,Beaufort-Chukchi Seas,and Greenland Sea;and thicker in Baffin Bay-Labrador Sea,air temperature is higher in northeastern China,southern Tibetan Plateau,and Hainan Island than normal.(5) When sea ice is thicker in East Siberian Sea 5 months earlier,thinner in Baffin Bay-Labrador Sea 7-15 months earlier,air temperature is lower over the north of Tibetan Plateau and higher in the north part of northwestern China than normal,and a reverse correlation also exists.  相似文献   

19.
Changes in Arctic clouds during intervals of rapid sea ice loss   总被引:2,自引:0,他引:2  
We investigate the behavior of clouds during rapid sea ice loss events (RILEs) in the Arctic, as simulated by multiple ensemble projections of the 21st century in the Community Climate System Model (CCSM3). Trends in cloud properties and sea ice coverage during RILEs are compared with their secular trends between 2000 and 2049 during summer, autumn, and winter. The results suggest that clouds promote abrupt Arctic climate change during RILEs through increased (decreased) cloudiness in autumn (summer) relative to the changes over the first half of the 21st century. The trends in cloud characteristics (cloud amount, water content, and radiative forcing) during RILEs are most strongly and consistently an amplifying effect during autumn, the season in which RILEs account for the majority of the secular trends. The total cloud trends in every season are primarily due to low clouds, which show a more robust response than middle and high clouds across RILEs. Lead-lag correlations of monthly sea ice concentration and cloud cover during autumn reveal that the relationship between less ice and more clouds is enhanced during RILEs, but there is no evidence that either variable is leading the other. Given that Arctic cloud projections in CCSM3 are similar to those from other state-of-the-art GCMs and that observations show increased autumn cloudiness associated with the extreme 2007 and 2008 sea ice minima, this study suggests that the rapidly declining Arctic sea ice will be accentuated by changes in polar clouds.  相似文献   

20.
利用1961—2015年Hadley中心逐月海表温度资料、海冰密集度资料以及NCEP/NCAR再分析资料,探讨了秋季北极海冰对于EP型ENSO事件的异常响应,并进一步研究了这种异常响应的可能原因。结果表明,秋季北极海冰对EP型ENSO的响应具有非线性,特别是喀拉海海域(60°~90°E,70°~80°N)海冰无论在EP型El Ni?o或是La Ni?a位相,均表现为显著的负异常。进一步研究发现,不同ENSO位相造成该区域海冰异常偏少的机制有明显不同。EP型El Ni?o年秋季菲律宾附近海域对流活动被抑制,所激发的经向波列在高纬地区形成异常反气旋环流,其南风分量向喀拉海输送暖平流,造成海冰异常偏少。而EP型La Ni?a年喀拉海海域则主要受到来自大西洋开放性海域西风异常的影响,合成结果和个例年均显示EP型La Ni?a年秋季北大西洋上空存在一个显著的西风急流中心,有利于北大西洋开放性海域较暖海水向下游输送,进而影响喀拉海海冰。这些结果表明,热带外地区大气环流场对EP型ENSO的非线性响应导致了喀拉海海冰对EP型ENSO事件的响应也表现出明显的非线性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号