首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase.  相似文献   

2.
Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.  相似文献   

3.
Summary  Transmission M?ssbauer spectra of synthetic Ca-free P21/c Mg0.22Fe0.78SiO3 clinopyroxene were collected at temperatures in the range 4.2 to 745 K and in an external magnetic field of 60 kOe at 180 K. The magnetic order-disorder transition temperature was determined by M?ssbauer thermoscanning to be 21 ± 3 K. Above this temperature, all M?ssbauer spectra consist of a superposition of two doublets, respectively produced by Fe2+ ions at an almost regular octahedral M1 site and at a more distorted octahedral M2 site. The temperature variation of the Fe2+ center shifts were analyzed using the Debye model for the lattice vibrations. The characteristic M?ssbauer temperatures were found to be 356 K ± 35 K for M1 and 333 K ± 25 K for M2. From the external field (60 kOe) M?ssbauer spectrum recorded at 180 K, the principal component V zz of the electric field gradient (EFG) was determined to be positive for both sites but precise values for the magnitudes of the asymmetry parameters η of the EFG could not be determined. The temperature variations of the M1 and M2 quadrupole splittings ΔE Q(T ) are consistent with the higher distortion of the M2 octahedra. Using the crystal-field model to interpret ΔE Q(T ), the energy gaps δ1 and δ2 of the first excited electronic states within the 5D orbital term were estimated to be 410 ± 50 cm−1 and 730 ± 50 cm−1 for M1, and δ1 = 1050 ± 75 cm−1 for M2. Received May 29, 2000;/revised version accepted July 13, 2001  相似文献   

4.
It is well known that in pyroxene structure,there are two metal sites,M1 and M2.Generally speaking,Ferrous iron in each of these sites would normally be expected to give rise to a doublet,However,anomalies have been found in the relative areas of the peaks in the room temperature spectra of some clinopyroxene(CPX)when the above assignment is followed.According to the calculation of Next Nearest Neighbor configurations of divalent cations in M1,we found that the four configurations of M1 can be divided into two groups.One group is 3Ca configuration that increases with the content of Ca(p.f.u);the other group is made up of three No-3Ca configurations that decrease with the content of Ca.The two groups contribute to the spectrum structure of M1.so in this study we fit two doublets for ferrous iron in M1.Though there were several reports on Fe^3 in tetrahedral site previously,it was not sure that Fe^3 occupies the T site is a universal fact in CPX,despite of the content of Al.We found that the Fe^3 in the T site fitted by Moessbauer spectroscopy is negatively correlated to the Si content in the T site and positively correlated to the Fe^3 in the T site estimated on the supposition that Fe^3 and Al occupy the T site randomly.If it is true.it is important in the modeling of ion exchange geobarometries and geothermomeries.  相似文献   

5.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

6.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

7.
Over thirty samples of natural Ti-bearing amphiboles with Ti- and Fe-contents ranging from 0.111 to 0.729 atom per formula unit (a.p.f.u.) and from 0.479 to 2.045 a.p.f.u., respectively, were studied by means of optical absorption spectroscopy and microprobe analysis. Thirteen samples were also studied by Mössbauer spectroscopy. A strong pleochroic absorption edge, causing the dark brown colours of Ti-bearing amphiboles, is attributed to ligand-metal and metal-metal charge transfer transitions involving both iron and titanium ions (O2?→ Fe3+, Fe2+, O2?→ Ti4+ and Fe2+ + Ti4+→ Fe3+ + Ti3+). A broad intense Y-polarized band ~22?000?cm?11/2?≈?3700?cm?1) in spectra of two low iron amphiboles with a relatively low Fe3+/Fetotal ratio, both from eclogite-like rocks in kimberlite xenoliths, was attributed to electronic Fe2+(M3) + Ti4+(M2)→Fe3+(M3)+Ti3+(M2) IVCT transitions. The IVCT bands of other possible ion pairs, involving Ti4+ and Fe2+ in M2 and M1, M4 sites, respectively, are presumed to be at higher energies, being obscured by the absorption edge.  相似文献   

8.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

9.
The minerals of the jarosite group, including the jarosite-beudantite-segnitite and jarosite-beaverite-osarizawaite isomorphic series, were studied with M?ssbauer spectroscopy. All the samples were collected from the oxidation zones of the South Urals sulfide deposits. In contrast to the jarosite containing one Fe3+ doublet in the M?ssbauer spectrum, the Pb-bearing members of the jarosite group—beudantite and beaverite—have two doublets in their spectra. Fe3+ is distributed at two sites with similar isomer shifts and different quadrupole splitting. The quantitative ratio of those doublets in the structure is roughly equal. The M?ssbauer spectra of the intermediate jarosite-beudantite and beaverite-osarizawaite members are superpositions of the jarosite and beudantite spectrum types with a prevalent jarosite doublet and larger quadrupole splitting. An admixture of antimony increases the Fe3+ content in the doublet with smaller quadrupole splitting. The unequal Fe3+ distribution in those two sites may be related to the ordering of cations in octahedrons. The appearance of two different Fe3+ sites probably resulted from the local coordinating role of Pb rather than from isomorphic replacement in anion groups.  相似文献   

10.
The Nybö eclogite pod in Norway is characterized by a great variety of clinopyroxene compositions with Jd contents ranging from less than 5% up to nearly 80%, whilst Ac+Hd contents remain almost constant (mostly within 10±5%).Unconstrained X-ray structure refinement has been carried out on 16 pyroxene crystals (8 with C2/c and 8 with P2/n space group) from the Nybö eclogite, and also on one omphacite crystal (from Lago Mucrone in the Sesia-Lanzo Zone, Western Alps) which displays the highest degree of cation ordering yet described. The final discrepancy factors range from 0.014 to 0.029. The population of the sites has been determined on the basis of bond length considerations and of the results of the site occupancy refinement. Six of these crystals were subsequently analysed by electron microprobe.The tetrahedral sites are occupied by Si with negligible amounts of Al. Al, Mg, Fe3+ and Fe2+ occur at the octahedral sites; in the ordered P2/n crystals Al and Fe3+ are concentrated at the M11 site, whilst Mg and Fe2+ are concentrated and the M1 site. The eight-coordinated sites contain Ca and Na with negligible amounts of Fe and/or Mg. Ordering of Ca and Na takes place in the P2/n samples in such a way that in the most ordered crystal the M2 site contains almost exactly 0.75 Na+0.25 Ca and the M21 site 0.25 Na+0.75 Ca.Some geometrical features of the tetrahedra as well as of the octahedra (e.g. tetrahedral quadratic elongation and TILT angle) are not a simple linear function of composition, even when no change in space group occurs. The crystals evidently do not behave like a binary system of the two components, Di and Jd, but behave rather as if the composition Di0.50 Jd0.50 was a distinct end member.The boundaries between disordered and ordered phases in the Nybö pyroxenes fall at about 0.35 and 0.65 Jd/(Di+ Jd), in close agreement with the previous TEM investigations.The degree of order varies with composition following a bell-shaped curve: different coaxial bell-shaped curves can be drawn for crystals which have similar compositions but come from different metamorphic environments. The order vs composition diagrams may be useful for the interpretation of the P-T-t histories of the host rocks.  相似文献   

11.
A natural sample of aegirine, ideally NaFeSi2O6, has been studied by transmission Mössbauer spectroscopy in the range 4.2–480?K. At selected temperatures, a longitudinal external field of 60?kOe was applied to the absorber. The sample was observed to order magnetically at 11±1?K. The paramagnetic Mössbauer spectra (MS) show the presence of ~10% Fe2+ in the M1 sites of the clinopyroxene structure. These MS have been decomposed into four quadrupole doublets: two minor ones for Fe2+ on M1 sites, a dominant one due to Fe3+ on M1 sites, and a second ferric component, with a contribution of ~3% and attributable to the tetrahedral sites. Two possibilities concerning the origin of the two distinct Fe2+ (M1) doublets are discussed. They are respectively based on inter-valence charge transfer and on the existence of distinct Fe2+ orbital configurations at the two M1 sites. Neither of the two models could be firmly excluded. The asymmetry parameter η of the electric field gradient at the Fe3+ (M1) sites is close to 1.0 and the quadrupole splitting within 0.34±0.01?mm/s at all temperatures. The MS at 4.2?K shows an asymmetric hyperfine-field distribution for Fe3+, with a maximum-probability field of 468?kOe. The maximum-probability field for Fe2+ is found to be 220?kOe. The shape of the applied-field MS at 4.2?K implies a static antiferromagnetic ordering and was successfully interpreted by a bidimensional distribution of the magnitude and orientation of the hyperfine field. Finally, the temperature variations of the respective centre shifts and quadrupole splittings could be explained on the basis of existing theoretical models.  相似文献   

12.
Oxidation and dehydrogenation processes for heat-treated anthophyllites were investigated using Mössbauer and infrared spectroscopy. At temperatures from 350°C to about 650°C, Fe2+ at the M1 and M3 sites oxidizes, yielding Fe3+ + one electron. A proton from the (OH) is liberated and combines with this electron to form a hydrogen atom; and some Fe2+ ions at the M2 and M4 sites exchange with Mg at the M1 and M3 sites and then are oxidized in a similar way; at higher temperature, OH remaining in the (MgMgMg/Fe3+)-(OH)-configuration are dehydrogenated by decomposition of the amphibole to orthopyroxene and quartz. During oxidation and dehydrogenation of anthophyllite, there is disordering of Mg and Fe at the M1, M2, M3 and M4 sites in all samples studied. When all Fe2+ is oxidized, the site occupancies of at the M4 and M1, M2, M3 sites become identical, indicating that Mg and Fe3+ are completely disordered at these sites.  相似文献   

13.
The mechanism of thermally induced oxidation of Fe2+ from natural pyrope has been studied at 1000 and 1100 °C using 57Fe Mössbauer spectroscopy in conjunction with XRD, XRF, AFM, QELS, TG, DTA and electron microprobe analyses. At 1000 °C, the non-destructive oxidation of Fe2+ in air includes the partial stabilization of Fe3+ in the dodecahedral 24c position of the garnet structure and the simultaneous formation of hematite particles (15–20 nm). The incorporation of the magnesium ions to the hematite structure results in the suppression of the Morin transition temperature to below 20 K. The general garnet structure is preserved during the redox process at 1000 °C, in accordance with XRD and DTA data. At 1100 °C, however, oxidative conversion of pyrope to the mixed magnesium aluminium iron oxide, Fe-orthoenstatite and cristoballite was observed. During this destructive decomposition, Fe2+ is predominantly oxidized and incorporated into the spinel structure of Mg(Al,Fe)2O4 and partially stabilized in the structure of orthoenstatite, (Mg,Fe)SiO3. The combination of XRD and Mössbauer data suggest the definite reaction mechanism prevailing, including the refinement of the chemical composition and quantification of the reaction products. The reaction mechanism indicates that the respective distribution of Fe2+and Fe3+ to the enstatite and spinel structures is determined by the total content of Fe2+ in pyrope.  相似文献   

14.
Summary ?A single-crystal X-ray investigation was performed on crystals of P21/c natural pigeonite with varying Ca and Fe* ( = Fe2+ + Mn2+) contents, in order to verify the effect of microtextural disorder on structure refinements and to constrain the crystal chemistry of pigeonite. Antiphase domains and exsolution lamellae affect differently the refinement results. In a crystal free of exsolution the structure obtained after refinement with all reflections is an average of that of the antiphase domains and of their boundaries, whereas in an exsolved crystal it represents only the structure of the prevailing pigeonite lamellae. The refinement using only h + k odd reflections seems to give the structure of the Ca-free pigeonite characteristic of the antiphase domains rather than that of Ca-rich domain walls. The ratio of the scale factors in refinements with all reflections and with only h + k odd reflections allows the ratios of the exsolved augite and pigeonite phases to be estimated. The crystal chemistry of the investigated samples follows the trends outlined by data on Ca-free and Fe-free synthetic samples. In particular, it is shown that Ca and Fe* substitution for Mg induce similar changes in the average structure, i.e. both induce an expansion in the M1 polyhedron and decrease the difference between the M2–O3 distances. Received October 18, 2001; revised version accepted February 15, 2002  相似文献   

15.
Undisturbed core samples of Recent sediments from the Wash tidal flats, East Anglia, England, obtained using a Delft corer, were studied with special reference to the diagenesis and geochemical behaviour of iron. The Mössbauer effect in 57Fe was used to monitor the distribution of Fe between different phases as a function of depth, together with the magnetic mineralogy and palaeomagnetic properties.The cores consist of, successively downwards: 0.36 m brown clay; 1.5 m finely laminated silts and fine sands, and 7.14 m homogeneous fine sands. The dominant minerals are quartz, feldspar, calcite and clay minerals, and chemical analysis for Al, Si, Mg, Mn, Ca, Fe, Na, K showed variations closely linked to lithological changes. Illite is the most abundant clay mineral (mean 48%), followed by mixed layer illite-montmorillonite and montmorillonite, kaolinite and chlorite. Chlorite is the major iron-bearing clay mineral and represents 4 to 10% of the <2 μm fraction throughout the core. Sulphide minerals are present throughout the core, including framboidal pyrite.Computer fit analysis of the Mössbauer spectra of best quality showed contributions from Fe2+ and Fe3+ in clay minerals (essentially chlorite), low-spin Fe2+ in pyrite, and magnetically ordered iron in greigite (Fe3S4). Systematic variations, as a function of sample depth, indicate a relative increase in the amount of Fe in pyrite at the expense of the clay minerals.Magnetite and titanium-bearing magnetite are the carriers of natural magnetic remanence in these sediments.The direction and intensity of natural remanence in the samples compare well with the known secular variation of the Earth's magnetic field derived from the historic-archaeomagnetic record and this enables the samples to be dated and sedimentation rates to be determined (1.5 mm yr?1 for the upper 2 m and ~7.7 mm yr?1 for the lower 7 m).  相似文献   

16.
The crystal chemistry of Fe ions in Cr-spinel from the largest Ural ultramafic massifs has been studied by Mössbauer spectroscopy at room temperature and the boiling temperature of liquid nitrogen. The spectra substantially depend on the mineral composition (stoichiometry) and measurement temperature; Fe2+ and Fe3+ doublets significantly overlap; the Fe2+ doublet lines are markedly broadened. According to the Mössbauer data, the degree of iron oxidation is 7–35% and appreciably differs from that in the stoichiometric approximation. The disturbance of integral stoichiometry by di- and trivalent cations (deviation of the Me3+/Me2+ value from 2.0) may be caused not only by partial inversion of the mineral structure but also by local micro- and nanoscale heterogeneity of the mineral, clustering of Fe2+ and Al (Cr, Fe3+) cations, and the appearance of associates. Possible application of the QS-distribution method for analyzing nonequivalent nuclear iron states and the thermal dynamics of Mössbauer spectra for studying local clustering effects of iron cations is discussed. It is shown that these approaches give new information on local heterogeneity of structural sites occupied by iron ions.  相似文献   

17.
Four pairs of associated calcic and sodic amphiboles from blueschistfacies metamorphic rocks were analyzed with the electron microprobeand studied by single-crystal X-ray diffraction techniques.Except for ranges in the ratios Mg/(Mg+Fe) and Fe3+/(Fe3++Al+Ti),the sodic amphiboles are similar in chemical composition. Theamount of calcium in the M(4)-site ranges only from 0·18to 0·21 ion per formula unit. The calcic amphiboles,in addition to a range in Mg/(Mg+Fe), vary in Na/(Na+Ca) ratio(0·29–0·48). Three of the calcic amphibolescontain less than 1·5 calcium ions per formula unit,indicating a significant solid solution of sodic amphibole componentsin the calcic amphibole phase. The a and b unit-cell parametersof the calcic amphiboles decrease with increased content ofthe sodic component.  相似文献   

18.
Solid solution in vesuvianite is elucidated by examining chemical trends and cation abundances in 22 microprobe analyses of samples from the Big Maria Mountains, southeastern California. Two recent structure refinements indicate 50 filled cation sites per formula, providing the basis for data normalization. Previous optical absorption and Mössbauer studies help clarify site occupancies. Stoichiometric abundances of Si and Ca + Na indicate 18 and 19 per formula, filling all 4- and 8-fold sites respectively. The four 6-fold A-sites are filled with Al. The solid solution occurs mainly within the eight 6-fold AlFe-sites (Al, Mg, Fe2+, Fe3+, Ti) and one 5-fold B-site (Mg, Fe2+, Fe3+). Chemical trends and crystal chemical constraints delineate eight independent substitutions.An extensive solid solution in the elements Mg, Fe, Al, and Ti suggests considerable potential as a petrogenetic indicator. In order to treat equilibria involving vesuvianite thermodynamically, a reference composition must be chosen and activity-composition relations modeled. For a reference composition, Mg-vesuvianite (Fe, Ti, Na-free) was chosen because of its chemical simplicity, but problems in ascertaining its stoichiometry have led previous workers to propose at least six different formulas. In this study, its formula is determined from the microprobe analyses by applying exchange vectors to substitute components of pure Mg-vesuvianite for Fe and Ti. This yields Ca19Mg2Al11-Si18 O69(OH)9, with AlFe-sites=MgAl7, and B-sites=Mg. Subdivision of the AlFe-sites into at least two distinct sites is suggested by observed chemical trends which are explanable only when different substitutions are considered to operate within different AlFe-sites.A thermodynamic mole fraction is formulated for Mg-vesuvianite based on an ideal mixing-on-sites solution model. A method is provided for estimating the distribution of Fe between the AlFe- and B-sites. Thermodynamic mole fractions calculated using Fe site distributions estimated from microprobe data yield results similar to those calulated using Fe site distributions determined from Mössbauer analysis.  相似文献   

19.
The different Fe2+ lattice sites in iron-rich chlorites have been characterized by Mössbauer spectroscopy and molecular orbital calculations in local density approximation. The Mössbauer measurements were recorded at 77?K within a small velocity range (±3.5?mm?s?1) to provide high energy resolution. Additionally, measurements were recorded in a wider velocity range (±10.5?mm?s?1) at temperatures of 140, 200, and 250?K in an applied field (7?T) parallel to the γ-beam. The zero-field spectra were analyzed with discrete Lorentzian-shaped quadrupole doublets to account for the Fe2+ sites M1, M2, and M3 and with a quadrupole distribution for Fe3+ sites. Such a procedure is justified by the results obtained from MO calculations, which reveal that different anion (OH?) distributions in the first coordination sphere of M1, M2, and M3 positions have more influence on the Fe2+ quadrupole splitting than cationic disorder. The spectra recorded in applied field were analyzed in the spin-Hamiltonian approximation, yielding a negative sign for the electric field gradient (efg) of Fe2+ in the M1, M2, and M3 positions. The results of the MO calculations are in quantitative agreement with experiment and reveal that differences in the quadrupole splittings (ΔE Q ), their temperature dependence and in the isomer shifts (δ) of Fe2+ in M1, M2, and M3 positions can theoretically by justified. Therefore, the combined Mössbauer and MO investigation shows that the three Fe2+ lattice sites in the chlorites investigated here can be discriminated according to their ΔE Q -δ parameter pairs. With the calculated average iron-oxygen bond strength, the MO study provides an explanation for the observed trend that the population of the three lattice sites by Fe2+ increases according to the relation M1?相似文献   

20.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号