首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
贵州西部两场典型暴雨个例对比分析   总被引:2,自引:1,他引:2  
利用ECWMF数值预报产品资料、逐日客观分析资料、常规观测资料以及高密度区域气象自动站降水资料和物理量资料,对2011年6月中、下旬发生在贵州西部地区的两场暴雨天气过程进行对比分析。结果表明:①两场暴雨的发生,中低层均有西南低涡沿切变线东南移和强盛的西南暖湿气流,第1场有高原槽,第2场既有高原槽又有南支槽等天气条件的有效合理配置,以及较强的垂直上升运动和充足的水汽、能量条件,为暴雨产生提供充分的条件。②区域气象自动站降水资料显示,中小尺度天气系统演变对强降水落区有很好的指示意义。③WRF模式较准确地模拟出降水落区、强度以及700 hPa上西南涡沿切变线移动趋势,对类似暴雨短时临近预报具有重要的指示意义。  相似文献   

2.
2000年7月西南涡暴雨过程的分析和数值模拟   总被引:7,自引:31,他引:7  
对2000年7月1~8日西南涡暴雨过程进行了大尺度分析,并利用中尺度暴雨模式MRM1对这次过程进行了数值模拟,结果表明,这次西南涡暴雨过程分为两个阶段,分别对应着两次冷空气南下。暖切变线的南北摆动是发生大暴雨的一个重要原因,而西南急流核的向北传播导致雨区向北传播。模式成功地模拟出了中-α尺度的低涡、切变线,沿暖切变线的强烈倾斜上升气流、中尺度正涡度以及水汽通量散度辐合柱状结构,这些对暴雨的发生提供了动力和水汽条件;而沿低空急流轴的狭长暖湿舌,其北部的干冷区构成的南北向能量锋区,以及较强的中低空不稳定层结是这次暴雨持续发生的重要条件。  相似文献   

3.
梅雨暴雨中高低空急流与西南涡的活动   总被引:5,自引:1,他引:5  
利用MM5中尺度模式对1991年7月5日00时-6日12时的降水进行了数值模拟。通过对每3h一次模拟结果的诊断分析,发现高空急流的走向与西南涡的活动关系密切,当我国东部位于西北风急流时,西南低涡稳定少动;位于西风急流时,西南涡快速东移;位于西南风急流时,西南涡加强,移速减慢。暴雨活动与西南涡的东移一致。最初暴雨区稳定少动,之后暴雨区快速东移,后期暴雨区缓慢移动。湿位涡对西南涡的斜压性加大有重要的贡献。在西南涡斜压性未建立之前以及冷锋附近,雨区可位于低层西南风急流左侧的任何位置,当低涡的斜压性加大,出现暖空气的作用时,暴雨区均出现在西南风急流的左前方。  相似文献   

4.
采用WRFV3.01模式对2010年7月18—20日发生在华北地区的西南涡暴雨过程进行了模拟与分析。结果表明:这次西南涡暴雨主要降水机制是高低空急流的耦合。暴雨出现在低空急流的前方和高空急流的右后方;高空急流为强降水提供了高层的辐散场和高层的干冷空气,低空急流为降水区提供了充足的水汽和能量;这次西南涡降水有明显的暖锋降水性质。  相似文献   

5.
西南低涡暴雨的中尺度特征   总被引:1,自引:2,他引:1  
黄福均  肖洪郁 《气象》1989,15(8):3-9
本文用综合方法,分析了对流层各层合成西南低涡所对应的大中尺度流场,并给出其物理图象。应用每小时雨强、雷达回波和卫星云图资料,揭露了西南低涡的某些中尺度特征。这对进一步了解西南低涡的形成、发展及其内部的结构是有用的。  相似文献   

6.
一次广西暴雨过程的数值模拟及低涡系统分析   总被引:1,自引:2,他引:1  
应用WRF中尺度数值模式对2008年6月12日广西地区的一次大暴雨过程进行了模拟,利用模式输出资料,对引发这次大暴雨的西南低涡的演变情况及其物理场特征进行了分析。结果表明,低涡暴雨的发生具有明显的不均匀性,暴雨主要出现在低涡东侧暖区切变线附近;暴雨过程中充沛的水汽主要来源于孟加拉湾和中国南海,水汽的辐合不仅是涡旋区降水的必要条件,还是低涡发展加强的一个有利因素;强降水与强上升运动及正涡度区有很好的对应关系,低涡低层有强不稳定能量积聚也是造成此次大暴雨的重要原因之一。  相似文献   

7.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12—13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析。WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对流系统的整个发展过程。分析结果表明:此次特大暴雨是在高层200 hPa强大的南亚高压稳定少动,中层500 hPa的短波槽的生成、转向和发展与副高的维持,低层的700 hPa和850 hPa中尺度低涡、切变线以及地面梅雨锋扰动的共同作用下造成的;700 hPa低涡、切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统是这次特大暴雨的直接制造者。细网格模拟结果揭示,安庆特大暴雨与850 hPa上的β中尺度对流系统(MβCS)的生成和强烈发展直接相关。该MβCS具有明显的动力—热力结构特征,显示:强上升运动与饱和气柱的耦合,强散度柱与强涡柱的耦合发展,强上升运动与位势不稳定的耦合发展,湿静力不稳定与湿对称不稳定共存。  相似文献   

8.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12-13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析.WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对...  相似文献   

9.
影响江淮地区的西南涡中尺度结构特征   总被引:8,自引:4,他引:8  
韦统健  薛建军 《高原气象》1996,15(4):456-463
利用合成方法对3次西南涡过程的流场,温湿场和涡度场等进行了分析。结果指出:沿切变线存在风场的中尺度扰动,低涡的尺度为250-300km,中低层有两支不同性质的气流流入低涡区,降水主要发生在低涡移动方向右侧的两象限。温湿场和铅直流场在低涡区呈现明显的不对称分布,低涡是一个显著的斜压系统。  相似文献   

10.
"99·6"梅雨锋暴雨低涡切变线的数值模拟和分析   总被引:19,自引:1,他引:19  
隆霄  程麟生 《大气科学》2004,28(3):342-356
在天气分析的基础上,利用非静力中尺度模式MM5和四维资料同化逼进方法及双向三重嵌套网格技术,对1999年6月23~25日(简称"99·6")发生在长江中下游地区的梅雨锋暴雨过程进行了数值模拟.结果表明:模拟结果与观测结果的比较指出,高分辨数值模式MM5可以成功地模拟梅雨锋中尺度低涡切变线的发生和发展;模拟结果显示,在α中尺度低涡切变线发展过程中,低层强的西南急流和东北气流增强了低层的辐合;而高空的西风急流和东风急流则增强了高空的辐散;正是由于这种从高空到低空环流的配置,才促进了α中尺度低涡不断发展;模拟低涡切变线不同部位的垂直环流和物理量场表明,"99·6"梅雨锋低涡切变线的结构非常复杂:在梅雨锋的发展期,暖锋附近的垂直上升运动最强,低涡中心次之,冷锋附近最弱.模拟结果也表明,由于下垫面特征的不同,中国和日本的梅雨锋暖锋附近环流结构有较大的区别;模拟结果显示,在α中尺度低涡发展过程中,不断有扰动在低涡前部发展,激发并分裂出一系列的β中尺度系统,β中尺度系统运动剧烈,但由于其低层辐合强于中空辐散,所以当它远离母体时会很快衰减.  相似文献   

11.
黔西南一次中尺度暴雨的数值模拟诊断研究   总被引:6,自引:0,他引:6  
乔林  陈涛  路秀娟 《大气科学》2009,33(3):537-550
使用WRF模式 (Weather Research and Forecasting model) 模拟了2006年6月12日贵州省西南部一次典型的突发性强对流暴雨过程, 模式较真实地模拟了这次局地发展的中尺度暴雨天气过程。对流层低层的中尺度辐合线造成了初始的上升运动, β中尺度对流系统首先在地面锋线前不稳定的暖区中生长, 辐合线南侧的偏南气流对水汽和热量的输送是对流能够持续生长的最重要因素。通过非地转ω方程的诊断证明, 在降水开始后, 凝结加热的释放对β中尺度对流系统的发展最为重要, 它强迫产生的上升运动分量超过了低层暖平流强迫造成的上升运动分量。在相应的热力、 动力结构的调整作用下, 对流层低层出现中尺度低空急流、 中尺度涡旋等动力结构。到降水过程后期, 由于偏北气流的侵入, 降水区上空对流层低层转为对流稳定的层结, β中尺度对流系统无法获得不稳定能量以维持其发展, 降水也逐渐减弱直至终止。  相似文献   

12.
济南“7.18”大暴雨中尺度分析   总被引:3,自引:0,他引:3  
综合利用常规资料、加密自动站观测资料、NCEP再分析资料、CloudSat卫星及多普勒天气雷达资料,分析了2007年7月18日济南市百年一遇的突发性大暴雨天气过程的成因及中尺度特征。结果表明,这次对流性大暴雨是由高空冷涡南部低槽、低层准东西向切变线、西太平洋副热带高压西北边缘的暖湿气流以及自东北南下冷空气共同影响所致;...  相似文献   

13.
济南7.18大暴雨中尺度分析研究   总被引:5,自引:3,他引:5       下载免费PDF全文
徐珺  毕宝贵  谌芸 《高原气象》2010,29(5):1218-1229
利用常规和非常规观测资料、分辨率0.5°×0.5°、间隔6 h的GFS(Global Forecast System)分析场资料和WRF(Weather Research and Forecasting model)数值模拟结果,对2007年7月18日济南大暴雨进行了中尺度分析研究。结果表明,低空急流、自内蒙古南下的低层冷空气和中层干空气的配置有利于中尺度对流系统的发展和维持;中尺度对流系统生成、发展于低涡西南侧的辐合线上,低涡入海过程中移速减慢使辐合线经过济南速度减慢,导致济南持续3 h的短时强降水;生成于中尺度对流系统前30 km左右的对流系统与中尺度对流系统的合并使降水增幅,最终导致极端降水发生。  相似文献   

14.
2008年“7.02”滇中大暴雨的成因诊断与数值模拟   总被引:3,自引:0,他引:3  
尤红  肖子牛  王曼  曹中和 《气象》2010,36(1):7-16
利用常规观测、NCEP 1°×1°再分析资料、云图、多普勒雷达回波和WRF模式对2008年7月2日滇中大暴雨进行成因诊断和数值模拟。结果表明:对流层高层的干侵入和中低层冷、暖平流交汇诱发副热带高压和滇缅高压间辐合低涡迅猛发展成强中尺度对流辐合体,加上中低层来自孟加拉湾的丰富水汽输送和中低层强水汽辐合共同引发此次大暴雨。过程中,垂直螺旋度贡献主要在中层;干位涡呈现出对流层顶强正高位涡,300 hPa以下为次正高位涡,两者之间为负区的柱状分布特征,次正高位涡强中心有向下层延伸特征。WRF较好地模拟了整个大暴雨过程中强降水主体时段和大暴雨落区特点,最大对流有效位能变化趋势对强降水有较好预示作用,模拟方案在积分30小时内效果较好。  相似文献   

15.
一次与西南低涡相联系的低空急流的数值研究   总被引:9,自引:0,他引:9       下载免费PDF全文
王智  高坤  翟国庆 《大气科学》2003,27(1):75-85
梅雨期西南低涡的东移发展与长江中下游降水的加强有密切关系,作者采用中尺度模式对一次西南低涡及其伴随低空急流的发展演变进行了数值模拟.模拟结果表明:在长江中下游大巴山地区低空急流先于西南涡东移发展;西南低涡及低空急流的生成发展在开始阶段与中层(400 hPa)的弱辐散密切相关;南风分量在西南低空急流的演变发展过程中起着更为主动的作用;南风分量增大中心位于南风分量中心的前方,促使南风分量中心东移;南风分量的动量方程收支分析表明水平平流项和产生项是促使南风分量变化的主要作用项,水平平流项和垂直平流项大部分相互抵消,科里奥利项的作用不可忽视,而其他项的值较小,在个别阶段和地区行星边界层项的作用在低层也较大.  相似文献   

16.
引发暴雨的西南低涡特征分析   总被引:3,自引:1,他引:3  
康岚  郝丽萍  牛俊丽 《高原气象》2011,30(6):1435-1443
利用NCEP1°×1°再分析资料、逐时卫星云图资料和自动站资料,分析了与4次暴雨过程密切相关的中尺度系统西南低涡。结果表明,引发暴雨的西南低涡相对于环境场是湿涡,南边界是主要水汽输送方向。在西南低涡形成阶段,整层均为正涡度,一般维持深厚的上升气流,具有较为深厚的暖心结构。在其发展旺盛阶段,正涡度呈上升趋势,对流层中低层...  相似文献   

17.
There exist typically two kinds of low-level col fields over the middle and lower reaches of the Yangtze River of China during summer.One is associated with the mesoscale vortex embedded in the Meiyu f...  相似文献   

18.
"987”突发大暴雨及中尺度低涡结构的分析和数值模拟   总被引:64,自引:13,他引:64       下载免费PDF全文
程麟生  冯伍虎 《大气科学》2001,25(4):465-478
1998年7月20~23日(简称"987”),发生在鄂东和鄂西南地区的突发性特大暴雨过程在长江流域是罕见的.该过程与500hPa短波槽和700hPa低涡切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统密切相关.对该过程采用非静力MM5的二重网格双向嵌套进行了全物理过程的数值模拟,其中,可分辨尺度降水采用Reisner混合相微物理显式方案,次网格尺度降水采用Grell积云参数化方案.双向嵌套的细网格模拟结果揭示,武汉周边地区的特大暴雨与700hPa上一个β中尺度低涡的生成和强烈发展直接关联.该低涡具有明显的动力-热力结构特征:特强上升运动与饱和气柱互耦,超强散度柱与强涡柱耦合发展,湿静力不稳定与湿对称不稳定共存,深对流湿气柱内云团发展的微物理场结构比较典型.细网格域内前36h的降水分布和雨强与观测的大体相应,扩展域细网格的降水模拟明显改进了原细网格的模拟,特别是雨带.这一结果还表明,对持续时间较长的大暴雨,大尺度过程对中尺度系统的影响是重要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号