首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

2.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

3.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

4.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

5.
We present Very Large Array H  i observations of the gas-rich, interacting spiral galaxies, NGC 1253/1253A (Arp 279). The larger of the two galaxies, NGC 1253, has a very pronounced H  i ring and well-defined spiral structure. The velocity structure of the H  i data shows a sudden change at the position of the spiral arms; we identify this change as evidence of a strong spiral shock and hence proceed to estimate the pattern speed, Ωp, of the spiral arms in NGC 1253. Assuming that the pattern speed is constant across the disc our derived value places the outer Lindblad resonance (OLR) at the position of the observed H  i ring. As an accumulation of gas is expected at the OLR when this falls within the disc of a galaxy this agreement provides independent support for the derived value of Ωp.  相似文献   

6.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

7.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

8.
We present observations ( B, R, K , Hα and H  i ) of six nearby low surface brightness galaxies (LSBGs). They show an astonishing amount of variety; while some systems appear smooth and featureless, others resolve into loose assemblies of gas clouds. We have derived rotation curves, gas surface density profiles and star formation thresholds for three of the galaxies.
The results have been used to test two ideas describing their star formation: one in which star formation depends solely on the H  i gas surface density, and one that depends on differential rotation. We find that a critical H  i surface density criterion in the range  2.6–12.6 × 1020 cm−2 (2.1–10.1 M pc−2)  best describes the star-forming ability of these galaxies on local and global scales. A critical gas surface density based on the rotation of the gas is also able to describe the results on a global scale for two of the three galaxies for which we were able to derive rotation curves.  相似文献   

9.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   

10.
High-resolution H  i imaging observations of a heterogeneous sample of small galaxy groups are presented. The five galaxy groups studied show a broad range of individual H  i properties: e.g. loose groups surrounding LGG 138 and the genuinely compact LGG 455 are identified; a massive ring of neutral gas is discovered encircling two luminous galaxies in the LGG 138 group; a galaxy-sized mass of H  i is found in LGG 455 confined to an extragalactic cloud which exceeds the threshold density for star formation, yet is optically invisible; and the CCG 1 group is argued to be a chance alignment of Centaurus cluster galaxies. Global results of the study are that the deficit of H  i flux in synthesis imaging data compared with single-dish data is put forward as a quantitative measure of the diffuseness of neutral gas in galaxy groups; several groups contain gas-poor galaxies that ordinarily would contain detectable quantities of H  i – this is interpreted as being caused by an increased chance of gas-sweeping collisions in the group environment; and some evidence is found to support previous findings that compact groups preferentially occur in loose systems.  相似文献   

11.
We present a deep Giant Metrewave Radio Telescope (GMRT) search for H  i 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish H  i observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect H  i in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of H  i but with substantially improved limits on its H  i mass. Our derived upper limits on the H  i mass of SC 24 and KKR 25 are similar to the typical H  i mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.  相似文献   

12.
There is still no consensus as to what causes galactic discs to become warped. Successful models should account for the frequent occurrence of warps in quite isolated galaxies, their amplitude as well as the observed azimuthal and vertical distributions of the H  i layer. Intergalactic accretion flows and intergalactic magnetic fields may bend the outer parts of spiral galaxies. In this paper we consider the viability of these non-gravitational torques to take the gas off the plane. We show that magnetically generated warps are clearly flawed because they would wrap up into a spiral in less than two or three galactic rotations. The inclusion of any magnetic diffusivity to dilute the wrapping effect causes the amplitude of the warp to damp. We also consider the observational consequences of the accretion of an intergalactic plane-parallel flow at infinity. We have computed the amplitude and warp asymmetry in the accretion model, for a disc embedded in a flattened dark matter halo, including self-consistently the contribution of the modes with azimuthal wavenumbers   m = 0  and   m = 1  . Since the m = 0 component, giving a U-shaped profile, is not negligible compared to the m = 1 component, this model predicts quite asymmetric warps, maximum gas displacements on the two sides in the ratio 3 : 2 for the preferred Galactic parameters, and the presence of a fraction ∼3.5 per cent of U-shaped warps, at least. The azimuthal dependence of the moment transfer by the ram pressure would produce a strong asymmetry in the thickness of the H  i layer and asymmetric density distributions in z , in conflict with observational data for the warp in our Galaxy and in external galaxies. The amount of accretion that is required to explain the Galactic warp would give gas scaleheights in the far outer disc that are too small. We conclude that accretion of a flow with no net angular momentum cannot be the main and only cause of warps.  相似文献   

13.
The H  i surface density maps for a sample of 18 galaxies in the Eridanus group are Fourier analysed. This analysis gives the radial variation of the lopsidedness in the H  i spatial distribution. The lopsidedness is quantified by the Fourier amplitude A 1 of the m = 1 component normalized to the average value. It is also shown that in the radial region where the stellar disc and H  i overlap, their A 1 coefficients are comparable. All the galaxies studied show significant lopsidedness in H  i . The mean value of A 1 in the inner regions of the galaxies (1.5–2.5 scalelengths) is ≥ 0.2. This value of A 1 is twice the average value seen in the field galaxies. Also, the lopsidedness is found to be smaller for late-type galaxies; this is opposite to the trend seen in the field galaxies. These two results indicate a different physical origin for disc lopsidedness in galaxies in a group environment compared to the field galaxies. Further, a large fraction (∼30 per cent) shows a higher degree of lopsidedness ( A 1≥ 0.3). It is also seen that the disc lopsidedness increases with the radius as demonstrated in earlier studies, but over a radial range that is two times larger than done in the previous studies. The average lopsidedness of the halo potential is estimated to be ∼10 per cent, assuming that the lopsidedness in H  i disc is due to its response to the halo asymmetry.  相似文献   

14.
We investigate the relationship between the star formation rate per unit area and the surface density of the interstellar medium (ISM; the local Kennicutt–Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical time-scales of the clumps and an efficiency parameter of around  ε≈ 5  per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H2 fraction on total surface density to argue why neither total surface density nor the H  i surface density is a good local indicator of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surface density, does result in more of the star formation occurring close to the spiral arms. This agrees with the observation that grand design galaxies do not appear to show a larger degree of star formation compared to their flocculent counterparts.  相似文献   

15.
We measure the     B -band optical luminosity function (LF) for galaxies selected in a blind H  i survey. The total LF of the H  i selected sample is flat, with Schechter parameters     and     , in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the H  i density in the local Universe is more widely spread over galaxies of different size, central surface brightness and luminosity than the optical luminosity density is. The number density of very low surface brightness (LSB ) (>24.0 mag arcsec−2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas-rich and that the rest must be gas-poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag arcsec−2) to the local cosmological gas and luminosity density is modest     and     per cent respectively); their contribution to Ωmatter is not well-determined, but probably <11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.  相似文献   

16.
We present matched-resolution VLA H  i and SCUBA 850-μm maps of 20 IRAS -bright galaxies. Of the galaxies observed, two were not detected in H  i and two were detected in absorption. The H  i distributions of the galaxies have a range of morphologies. Some of the systems appear H  i deficient in the central regions which could be due to a high conversion rate of H  i into molecules or H  i absorption. In contrast to the H  i , the 850-μm emission has a smooth distribution which is concentrated towards the optical centre of each galaxy. We also find evidence for 850-μm emission extending to the periphery of the optical disc in some of the galaxies. Finally, we note that the relative lack of 850-μm emission when compared with H  i does not necessarily mean that the atomic gas and dust do not have similar mass distributions.  相似文献   

17.
Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H  i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H  i in these galaxies and to see if the hot IGM has in any way affected their H  i content or distribution. In addition to disturbed H  i morphology, we find that most galaxies have shrunken H  i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies.  相似文献   

18.
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their H  i signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common H  i surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.  相似文献   

19.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

20.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号