首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The vadose zone is the portion of the geologic profile above a perennial aquifer. Inclusion of mandatory vadose zone monitoring techniques as an approach to aquifer protect ion was first proposed under the Resource Conservation and Recovery Act in the United States in 1978 and has since received increasing acceptance at federal and stale levels. The goals of a vadose zone characterization and monitoring effort are to establish background conditions, identify contaminant transport pathways, identify the extent and degree of existing contamination, establish the basis for monitoring network design, measure the parameters needed in a risk assessment, and provide detection of contaminant migration toward ground water resources. The benefits of vadose zone monitoring include early warning of contaminant migration, potential reduction of ground water monitoring efforts, reduction of contaminant spreading and volume, and reduced time and cost of remediation once a contaminant release occurs. Vadose zone characterization and monitoring techniques should be considered as critical hydrologic tools in the prevention of ground water resource degradation.  相似文献   

2.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

3.
Anthropogenic agricultural chemicals of concern in ground water include nitrate and pesticides. Increased legislation and regulation of contaminant levels in ground water can be expected. Ground water contamination should be prevented from getting worse, but more research is necessary so as to base regulations on sound criteria. Health effects and acceptable risks must be better formulated. More research on chemical movement in the vadose zone is necessary for accurate predictive modeling of pesticide transport to ground water. Best management practices need to be developed so that farmers will be able to farm profitably while complying with regulations for maximum contaminant levels in underlying ground water. People from all concerned disciplines, citizens'groups, and policy-makers need to work together to develop realistic regulatory policies and management practices that will effectively protect public health while ensuring a viable and sustainable agriculture.  相似文献   

4.
Traditional monitoring methods using chemical analysis of ground water samples to detect pollutant migration are being superseded or used in conjunction with innovative approaches. A need to detect pollutants before they reach the water table has drawn interest to vadose (unsaturated) zone monitoring and brought together hydrogeologists, soil scientists and agricultural engineers who have been working on this subject for years.
Recent studies have identified over 50 different types of vadose zone monitoring devices and methods that have optimum utility in varying hydrogeologic settings. In general, measurements made in the vadose zone are trying to define storage, transmission of liquid waste in terms of flux and velocity, and pollutant mobility.
Criteria for the selection of alternative vadose zone monitoring methods are important for the development of site-specific systems. These criteria include: type of site; applicability to new, active, and abandoned sites; power requirements; depth limitations; multiple use capability; type of data collection system; reliability and life expectancy; degree of operational complexity; direct versus indirect methods; applicability to alternate media; effect on flow regime; and effect of hazardous waste on sampling or measurements. Application of the selection criteria is discussed in Everett et al. (1982a).  相似文献   

5.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

6.
Cleanup standards for volatile organic compounds in thick vadose zones can be based on indirect risk (transport to ground water) when contamination is below depths of significant direct risk. At one Arizona Superfund site, a one-dimensional vadose zone transport model (VLE-ACH) was used to estimate the continued transport of VOCs from the vadose zone to ground water. VLEACH is a relatively simple and readily available model that proved useful for estimating indirect risk from VOCs in the vadose zone at this site. The estimates of total soil concentrations used as initial conditions for VLF.ACH incorporated a variety of data from the site. Soil gas concentrations were found to be more useful than soil matrix data for estimating total soil concentrations at this arid-zone site. A simple mixing cell model was used with the VLEACH-derived mass loading estimates from the vadose zone over time to estimate the resulting changes in ground water concentrations. For this site, the results of the linked VLEACH/mixing cell simulations indicate it is likely that the federal MCI. for TCE will be exceeded in underlying ground water if remedial action on I he vadose zone is not pursued.  相似文献   

7.
Effective long‐term operation of soil vapor extraction (SVE) systems for cleanup of vadose‐zone sources requires consideration of the likelihood that remediation activities over time will alter the subsurface distribution and configuration of contaminants. A method is demonstrated for locating and characterizing the distribution and nature of persistent volatile organic contaminant (VOC) sources in the vadose zone. The method consists of three components: analysis of existing site and SVE‐operations data, vapor‐phase cyclic contaminant mass‐discharge testing, and short‐term vapor‐phase contaminant mass‐discharge tests conducted in series at multiple locations. Results obtained from the method were used to characterize overall source zone mass‐transfer limitations, source‐strength reductions, potential changes in source‐zone architecture, and the spatial variability and extent of the persistent source(s) for the Department of Energy's Hanford site. The results confirmed a heterogeneous distribution of contaminant mass discharge throughout the vadose zone. Analyses of the mass‐discharge profiles indicate that the remaining contaminant source is coincident with a lower‐permeability unit at the site. Such measurements of source strength and size as obtained herein are needed to determine the impacts of vadose‐zone sources on groundwater contamination and vapor intrusion, and can support evaluation and optimization of the performance of SVE operations.  相似文献   

8.
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.  相似文献   

9.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

10.
Currently, vadose zone monitoring is required under the Resource Conservation and Recovery Act (RCRA) only at land treatment facilities. Contaminant leak detection through ground water monitoring is very important, but it is considered to be after the fact. Remedial action costs can be reduced considerably by monitoring the vadose zone for compounds that exhibit high rates of movement. Volatile organic compounds (VOCs) exhibit this property and are present at many municipal landfills, recycling facilities, and treatment storage and disposal facilities (TSDFs). Through the authors'personal experience, it has been noted that gaseous phase transport of VOCs through the vadose zone is at least an order of magnitude greater than advective transport of VOCs in ground water. Therefore, VOCs in soil gas are an effective early warning leak detection parameter. Downward movement of leachate can be intercepted by porous cup lysimeters. Attenuation in the vadose zone slows the apparent movement of contaminants; however, it is only a matter of time before leachate reaches the water table. The authors believe that soil-gas and pore-water monitoring should and eventually will be required at all RCRA sites. If vadose zone monitoring becomes an additional requirement under RCRA, both the facility owner and the taxpayer will benefit. During the interim, facility owners can benefit by employing vadose zone monitoring techniques coupled with either qualitative or quantitative chemical analyses.  相似文献   

11.
Low-permeability layers of the vadose zone containing volatile organic compounds (VOCs) may persist as source zones for long time periods and may provide contamination to groundwater. At sites with low recharge rates, where vapor migration is the dominant transport process, the impact of vadose zone sources on groundwater may be difficult to assess. Typical assessment methods include one-dimensional numerical and analytical techniques. The one-dimensional approaches only consider groundwater coupling options through boundary conditions at the water table and may yield artificially high mass flux results when transport is assumed to occur by gas-phase diffusion between a source and an interface with a zero concentration boundary condition. Improvements in mass flux assessments for VOCs originating from vadose zone sources may be obtained by coupling vadose zone gas transport and dissolved contaminant transport in the saturated zone and by incorporating the inherent three-dimensional nature of gas-phase transport, including the potential of density-driven advection. This paper describes a series of three-dimensional simulations using data from the U.S. Department of Energy's Hanford site, where carbon tetrachloride is present in a low-permeability zone about 30 m above the groundwater. Results show that, for most cases, only a relatively small amount of the contaminant emanating from the source zone partitions into the groundwater and that density-driven advection is only important when relatively high source concentrations are considered.  相似文献   

12.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

13.
The U.S. Environmental Protection Agency (EPA) recently proposed to amend federal regulations to require vadose zone monitoring at certain hazardous waste facilities. To support this proposal, EPA evaluated previous policy on vadose zone monitoring and examined advances in vadose zone monitoring technology. Changes in EPA vadose zone monitoring policy were driven by demonstrated advances in the available monitoring technology and improvements in understanding of vadose zone processes/When used under the appropriate conditions, currently available direct and indirect monitoring methods can effectively detect contamination that may leak from hazardous waste facilities into the vadose zone. Direct techniques examined include soil-core monitoring and soil-pore liquid monitoring. Indirect techniques examined include soil-gas monitoring, neutron moderation, complex resistivity, ground-penetrating radar, and electrical resistivity. Properly designed vadose zone monitoring networks can act as a complement to saturated zone monitoring networks at numerous hazardous waste facilities. At certain facilities, particularly those in arid climates where the saturated zone is relatively deep, effective vadose zone monitoring may allow a reduction in the scope of saturated zone monitoring programs.  相似文献   

14.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

15.
A systematic approach is presented for the design of a multiphase vadose zone monitoring system recognizing that, as in ground water monitoring system design, complete subsurface coverage is not practical. The approach includes identification and prioritization of vulnerable areas: select ion of cost-effective indirect monitoring methods that will provide early warning of contaminant migration: selection of direct monitoring methods for diagnostic confirmation; identification of background monitoring locations; and identification of an appropriate temporal monitoring plan. An example of a monitoring system designed for a solid waste landfill is presented and utilized to illustrate the approach and provide details of system implementation. The example design described incorporates the use of neutron moisture probes deployed in both vertical and horizontal access tubes beneath the lcachate recovery collection system of the landfill. Early warning of gaseous phase contaminant migration is monitored utilizing whole-air active soil gas sampling points deployed in gravel- filled trenches beneath the subgrade. Diagnostic confirmation of contaminant migration is provided utilizing pore- liquid samplers. Conservative tracers can be used to distinguish between chemical species released by a landfill from those attributable to other (e.g. off-site) sources or present naturally in the subsurface. A discussion of background monitoring point location is also presented.  相似文献   

16.
Methods are developed to use data collected during cyclic operation of soil vapor extraction (SVE) systems to help characterize the magnitudes and time scales of mass flux associated with vadose zone contaminant sources. Operational data collected at the Department of Energy’s Hanford site are used to illustrate the use of such data. An analysis was conducted of carbon tetrachloride vapor concentrations collected during and between SVE operations. The objective of the analysis was to evaluate changes in concentrations measured during periods of operation and nonoperation of SVE, with a focus on quantifying temporal dynamics of the vadose zone contaminant mass flux, and associated source strength. Three mass flux terms, representing mass flux during the initial period of an SVE cycle, during the asymptotic period of a cycle, and during the rebound period, were calculated and compared. It was shown that it is possible to use the data to estimate time frames for effective operation of an SVE system if a sufficient set of historical cyclic operational data exists. This information could then be used to help evaluate changes in SVE operations, including system closure. The mass flux data would also be useful for risk assessments of the impact of vadose zone sources on groundwater contamination or vapor intrusion.  相似文献   

17.
Monitoring of the vadose zone is a potentially complex, time-consuming, and expensive problem. The location of monitoring points and selection of monitoring instruments can be optimized by using computer models. Numerical models developed for this purpose in the past have often been expensive and difficult to use. This paper describes a fast, three-dimensional, approximate analytical solution to the moisture content in the unsaturated zone. An analytical solution is available for steady-state drainage, whereas an approximate analytical solution is available for the transient case. The model will handle an arbitrary distribution of fluid sources, as well as vertical and horizontal impermeable boundaries.
The model may be applied to predict the incursion of fluid from accidental leakage or infiltration over large areas from unlined ponds and land treatment sites. The model is quite useful as an aid in designing monitoring or premonitoring programs near hazardous waste sites. Examples are presented to demonstrate the model's utility in estimating the maximum spread of a contaminant, the extent to which the fluid may spread with depth, the regions of high and low capillary pressure, and the non-linear behavior of the saturation when drainage from several sources in considered. These results are useful for the placement of monitoring locations and the selection of appropriate instruments, and as a tool in working with regulatory agencies to design monitoring programs. A glimpse of the future is necessary for today's planning. Computer models are some of the most useful crystal balls we have available.  相似文献   

18.
Diminishing rates of subsurface volatile contaminant removal by soil vapor extraction (SVE) oftentimes warrants an in-depth performance assessment to guide remedy decision-making processes. Such a performance assessment must include quantitative approaches to better understand the impact of remaining vadose zone contamination on soil gas and groundwater concentrations. The spreadsheet-based Soil Vapor Extraction Endstate Tool (SVEET) software functionality has recently been expanded to facilitate quantitative performance assessments. The updated version, referred to as SVEET2, includes expansion of the input parameter ranges for describing a site (site geometry, source characteristics, etc.), an expanded list of contaminants, and incorporation of elements of the Vapor Intrusion Estimation Tool for Unsaturated-zone Sources software to provide soil gas concentration estimates for use in vapor intrusion evaluation. As part of the update, SVEET2 was used to estimate the impact of a tetrachloroethene (PCE) vadose zone source on groundwater concentrations, comparing SVEET2 results to field-observed values at an undisclosed site where SVE was recently terminated. PCE concentrations from three separate monitoring wells were estimated by SVEET2 to be within the range of 6.0–6.7 μg/L, as compared to actual field concentrations that ranged from 3 to 11 μg/L PCE. These data demonstrate that SVEET2 can rapidly provide representative quantitative estimates of impacts from a vadose zone contaminant source at field sites. In the context of the SVE performance assessment, such quantitative estimates provide a basis to support remedial and/or regulatory decisions regarding the continued need for vadose zone volatile organic compound remediation or technical justification for SVE termination, which can significantly reduce the cost to complete for a site.  相似文献   

19.
Bayless ER 《Ground water》2001,39(2):169-180
The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of macropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.  相似文献   

20.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号