首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of the study on the periodicity in filament activity. The spectral analysis of the number of filaments shows a basic period at 141 (10.5 yr), at 138 (10.3 yr), and at 144 (10.7 yr) Carrington rotation in the northern and southern hemisphere, respectively.The time series concerning the index of filament activity shows also a typical period at 135 Carrington rotation (10.1 yr) at 144 Carrington rotation (10.7 yr) and at 133 Carrington rotation (9.9 yr), respectively, in the northern and southern hemisphere.The power spectrum analysis of the time series of the filamentary activity in the short-term also yields less pronounced but still noticeable peaks which are statistically significant.  相似文献   

2.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

3.
Interplanetary Scintillation (IPS) measurements obtained from a large number of compact radio sources (nearly 150 sources) distributed over the heliocentric distance range 15–175 solar radii (R() and heliographic latitude 75° N-75° S have been used to study the global three-dimensional density distribution of the solar wind plasma. Contours of constant electron-density fluctuations (N e) in the heliospheric plasma obtained for both the solar minimum and maximum show a strong solar latitude dependence. During low solar activity, the equatorial density-fluctuation value decreases away from the equator towards higher latitudes and is reduced by 2.5 times at the poles; the level of turbulence is reduced by a factor of 7; the solar-wind mass flux density at the poles is 25% lower than the equatorial value. However, during high solar activity, the average distribution of density fluctuations becomes spherically symmetric. In the ecliptic, the variation of N e with the heliocentric distance follows a power law of the formR –2.2 and it does not show any change with solar activity.  相似文献   

4.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

5.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

6.
Previous global models of coronal magnetic fields have used a geometrical construction based on a spherical source surface because of requirements for computational speed. As a result they have had difficulty accounting for (a) the tendency of full magnetohydrodynamic (MHD) models to predict non-radial plasma flow out to r 10r and (b) the appreciable magnitude, 3, of B r , (the radial component of B) consistently observed at r 1 AU. We present a new modelling technique based on a non-spherical source surface, which is taken to be an isogauss of the underlying potential field generated by currents in or below the photosphere. This modification of the source surface significantly improves the agreement between the geometrical construction and the MHD solution while retaining most of the computational ease provided by a spherical source surface. A detailed comparison between the present source-surface model and the MHD solution is made for the internal dipole case. The resulting B field agrees well in magnitude and direction with the coronal B field derived from the full MHD equations. It shows evidence of the slightly equatorward meridional plasma flow that is characteristic of the MHD solution. Moreover, the B field obtained by using our non-spherical source surface agrees well with that observed by spacecraft in the vicinity of the Earth's orbit. Applied to a solar dipole field with a moment of 1 G-r 3 , the present model predicts that B r at r 1 AU lies in the range of 1–2 and is remarkably insensitive to heliomagnetic latitude. Our method should be applicable also to more general (i.e., more realistic) configurations of the solar magnetic field. Isogauss surfaces for two representative solar rotations, as calculated from expansions of observed photospheric magnetic-field data, are found to show large and significant deviations from sphericity.  相似文献   

7.
We discuss some fundamental aspects of Earth history as predicted by what has come to be called coherent rather than stochastic catastrophism. The latter essentially seeks to provide an understanding of terrestrial evolution in terms of occasional kilometre-plus impactors from the asteroid belt whereas the former recognises a far more complex extraterrestrial regime arising from the streams of sub-kilometre and kilometre-plus debris due to the disintegration of successive giant comets in sub-Jovian orbits. Periodicities of 15 Myr during the later Phanerozoic (i.e. 250 to 0 Myr BP) and 200 yr during the Holocene (i.e. 10,000 to 0 yr 1313) are likely fundamental signatures in the terrestrial record relating to the action of past and present giant cornets respectively.  相似文献   

8.
Cameron  R.  Hopkins  A. 《Solar physics》1998,183(2):263-276
We present a new method for measuring the solar magnetic meridional flow, and provide a comparison with other recent work. We have performed a least-squares fit to azimuthally averaged Mount Wilson Observatory synoptic data encompassing Carrington rotations 1722 to 1929 to produce an estimate of the solar meridional flow. A parametric fit to our results expresses the solar meridional flow as v() = 28.5 sin2.5 cos.  相似文献   

9.
We use a simple equation of state, in which the adiabatic index depends on opacity and ionization and we integrate the dynamical and thermodynamical equations for the gravitational collapse of a typical solar composition protocloud, up to the virialization of the energies. Following the evolution of the thermal energy and ionization fraction, violent bounces are obtained at the sudden hardening of the equation of state, when the material becomes ionized.We also suggest a mechanism to explain the onset of protostellar winds.We introduce radiation losses in the model, and integrate again the modified equations, studying the evolution of a 1.1M protocloud. The object's effective temperature stays in a confined small zone of the IR region throughout its fast (40 yr) evolution and its luminosity oscillates and decreases from 5000L to 500L . The radius starts from 35 AU and shrinks down to 140R , before a physical instability gives birth to a strong shock wave with consequent mass loss.  相似文献   

10.
We consider the formation of cometlike and larger bodies in the trans-Neptunian region of the protoplanetary gas–dust disk. Once the particles have reached 1–10 cm in size through mutual collisions, they compact and concentrate toward the midplane of the disk to form a dust subdisk there. We show that after the subdisk has reached a critical density, its inner, equatorial layer that, in contrast to the two subsurface layers, contains no shear turbulence can be gravitationally unstable. The layer breaks up into 1012-cm clumps whose small fragments (109 cm) can rapidly contract to form bodies 10 km in size. We consider the sunward drift of dust particles at a velocity that decreases with decreasing radial distance as the mechanism of radial contraction and compaction of the layer that contributes to its gravitational instability and the formation of larger (100 km) planetesimals. Given all of the above processes, it takes 106 yr for planetesimals to form, which is an order of magnitude shorter than the lifetime of the gas–dust protoplanetary disk. We discuss peculiarities of the structure of planetesimals.  相似文献   

11.
An analysis of the longitudinal distribution of gamma rays from SAS-II data has been carried out using the available information on the gas distribution in the Galaxy. The overall distribution of cosmic rays in the galactic plane can be represented by an exponential function in galactocentric distance with a scale length of 8 kpc upto the solar circle and 10 kpc beyond. There is no evidence for a large gradient of the cosmic ray intensity in the outer parts of the Galaxy. The local emissivities of gamma rays in the energy regionsE >100 MeV and 35 MeV<E <100 MeV are (1.73±0.27)×10–25 photon/(cm3 s nH) and (2.40±0.41)×10–25 photon/(cm3 s nH) respectively. The contribution of °-decay gamma rays is 80% forE >100 MeV and 20% at lower energies. The electron spectrum required by this analysis has a power law spectral index of about –2.7 below a few hundred MeV. The observed gas distribution towards the galactic centre would predict a gamma-ray flux larger than observed. It is suggested that the molecular gas in the central region may be in the form of dense coudlets, in which low evergy cosmic rays do not penetrate; in this case the centre should be seen as a strong source only at high energies. An analysis of the radio sky survey map of the Galaxy at 408 MHz shows thatB varies with a scale-length of 40 kpc; no significance can be attached to the apparent deviation from the equipartition of energy densities between cosmic rays and magnetic field. The derived local emissivity is (1.46±0.28)×10–40 W/((m3 Hz), which corresponds toB 5 G. The surface brightness of radio and gamma-ray emissions in the Galaxy decreases from the centre with scale-lengths 6 kpc and 7 kpc respectively. No positive correlation can be noticed with either co-rotation radius or pattern speed, when compared with external spiral galaxies.  相似文献   

12.
A crossed Yagi antenna array at 35 MHz was employed in conjunction with a polarization switch so as to enable spectral observations of solar noise storm activity in R and L polarizations. Intense decametric solar noise storms were recorded during the third week of November 1975 and fourth week of March 1976 with the help of a high resolution spectroscope operating near 35 MHz.The paper describes some of the new microscopic spectral features observed during these two noise storms. Three sets of high resolution dynamic spectra of decametric solar bursts, two of which are explained in terms of induced scattering of Langmuir waves by thermal ions and the third in terms of additional propagation effects through dense coronal irregularities, are presented. The microscopic bursts, classified as inverted U U and dots, represent small-scale (104 km) phenomena with durations of less than a second.Some burst spectra appear as chain of dots with individual bandwidths 40 kHz and durations 0.3 sec. It is suggested that the bandwidth of such dot emissions (40 kHz) provides an evidence that they might indeed be generated by the process of induced scattering of plasma waves which predicts emission bandwidth f × 10–3, where f is the center frequency.Some bursts are observed as a chain of striations showing curvature along the frequency axis which is attributed to dispersion in propagation delays through the dense coronal irregularities.  相似文献   

13.
It is shown that major geomagnetic storms (¦Dst¦ > 100) tend to develop at about the time of the passage of the solar current sheet or disk at the location of the Earth, provided this passage is associated with (1) a large impulsive increase of the IMF magnitude B, (2) a negative value of the IMF angle (Theta), and (3) an increasing solar wind speed. The passage occurs in association with the 27-day rotation of the warped current disk or a temporal up-down movement of the latter. The period in which ¦Dst¦/t< 0 during major storms coincides approximately with the period when the solar windmagnetosphere energy coupling function becomes 1019 erg s–1. These conclusions do not depend on the phase of the sunspot cycle.These results may be interpreted as follows: A high speed solar wind flow, originating either from flare regions or coronal holes, tends to push the solar current disk to move upward or downward for either a brief period (1 3 days) or an extended period (2 weeks). A relatively thin region of a large IMF B > 10 is often present near the moving current disk. Waves are also generated on the moving current disk, and some of them cause large changes of . A high value of is found in the region of a large IMF B near the wavy solar current disk, where has a large negative value.  相似文献   

14.
On the persistence of the 22 y solar cycle   总被引:2,自引:0,他引:2  
We briefly discuss the existence of precise periodicities of the Hale cycle (-22 y), the Gleissberg cycle (-88 y), and -132 y cycle, in various direct and indirect indicators (as aurorae, 14C from tree rings and 10Be from polar ice) of solar activity. We consider also the behaviour of the 11y cycle and its first harmonic in modern sunspot series. It appears that the frequencies of -1 c/88 y and -1 c/132 y might be two subharmonics of the Hale cycle. The results support the hypothesis that the Sun behaves as a nonlinear system forced by an oscillator having the Hale frequency. The forcing element inside the Sun can be identified with a magnetofluid torsional oscillator.  相似文献   

15.
High resolution OVRO CO 1–0 observations of the inner 30 in the LINER galaxy NGC 5218 reveal the presence of a double centrally peaked molecular concentration with extensions out to a radius of 12. The molecular mass detected is 2.4 × 109 M and the gas surface density is high, 3000 M pc square in the inner 500 pc. The SFR is 2–3 M yr–1 and the SFE is 13, which are low or moderate values for that gas surface density. We interpret the inner feature as a rotating molecular ring with a radius of 200 pc. We furthermore suggest that the LINER activity in NGC 5218 is not caused by an aging starburst, but by a buried AGN.  相似文献   

16.
We describe initial results of a program to image massive newly-formed stars with sub-arc second spatial resolution. We discuss high-precision diffraction-limited size measurements at =10 m made using the 3 m Lick telescope. The point-spread function has FWHM 0.7; deconvolution yields a spatial resolution of 0.35. We find that the core component of one such object, LkH 101, is unresolved at these scales, and we are able to set a 95%-confidence upper limit of 270 AU for the diameter of the circumstellar dust shell. This places the dust at the same radial scale as a strong ionized stellar wind region seen at radio wavelengths. Our observations, when combined with published spectral observations, rule out an optically thick circumstellar disk but allow a radially thin, anisotropic distribution of dust, or alternatively an isotropic distribution of dust with a narrow range of large grain sizes.  相似文献   

17.
The inflationary unvierse model predicts the density parameter 0 to be 1.0 with the cosmological constant 0 usually taken to be zero, whereas observational estimates give 00.2 and 010-57 cm–2. It was found, however, that the observed variation of angular diameter with redshift for extragalactic radio sources could be interpreted in terms of a low density universe with linear size evolution of the sources for either an inflationary model with 0 or an open model with =0.  相似文献   

18.
The cooling effect of emission in the spectral lines, which dominates over continuous emission in the chromosphere and becomes important first around the temperature minimum, modifies greatly the radiative relaxation timet r in the solar atmosphere. This rises from low photospheric values to a maximum of 8 min just aboveT min, falls in the low chromosphere to 1.5 min because of line emission, but rises again to 6 min atT 7000–8400 K in the chromosphere where hydrogen ionization increases the specific heat.  相似文献   

19.
A 3 mm low noise beam-lead Schottky diode mixer has been developed. At cryogenic temperatures the conversion loss is 6.3 dB, and the DSB mixer noise temperature is 75 K, respectively. The mixer was installed into the cooled receiver for radioastronomical observations at the Metsähovi 13.7-m radio telescope. Total DSB noise temperature of the cooled receiver with an ultra low noise HEMT IF amplifier was 110 K at 103 GHz. The tuning range of the mixer mount was from 70 GHz to 115 GHz.  相似文献   

20.
Recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging have revealed dense gas and dust accretion disks in nearby ultra-luminous galactic nuclei. In the best studied ultraluminousIR galaxy, Arp 220, the 2m imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gasmasses 109M for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are 2×109 M , that is, only slightly largerthan the gas masses. These disks have radii 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicatethat the gas in the disks has area filling factors 25-50% and mean densitiesof 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps 10 M yr -1. If this inflow persists to very small radii, it is enough to feed even the highest luminosity AGNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号