首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Weights-of-Evidence (W-of-E) technique was applied, within a geographic information system (GIS), to derive a model of rockfall potential associated with mining-induced subsidence. The purpose of the model was to describe the potential for rockfalls from up to 60 m high steep sandstone gorges and slopes associated with proposed underground longwall operations within the immediate vicinity of a previously mined area. Ten known rock falls associated with the previous mining operation were used as training points. Six evidential themes were considered-slope, cliff height, planform curvature, profile curvature, the distance of the cliff areas from the longwall panels, and the distance of the cliff areas from the river. Two models were created, one based on a mine layout in which longwall panels extend beneath the steep areas of a nearby river, and a second in which the mine layout is modified so that mining does not occur directly beneath or within 50 m of the steep slopes. This is to allow for the comparison of rockfall potential based on different mining configurations. The results demonstrate that the W-of-E method is a suitable tool for mine subsidence impact assessment, and suggest that not mining directly under the Nepean river may decrease rockfall potential, on average, by approximately ten times. Numerous limitations with the results, relating to the availability of appropriate evidential theme data and the accuracy of training points, are discussed.  相似文献   

2.
The purpose of mining subsidence prediction is to produce a reliable assessment of ground movement arising from underground mineral extraction. The results of the prediction are used to assess the likelihood of the associated effects on surface structures. In most countries, the assessment of mining subsidence has become an essential part of mining plans, which must be approved by relevant government bodies and mining regulators. It is therefore important to develop a subsidence prediction method that is suitable for a particular country or mine field. Further to the recent development of a Generalised Influence Function Method (GIFM) for subsidence prediction at RMIT University, a case study in Hunter coalfield of in New South Wales, Australia is presented to illustrate the applicability of the GIFM approach for subsidence prediction in multi-seam longwall mining. A computer program is used to calculate subsidence, horizontal displacement and principle strains arising from the extraction of longwall panels. The observed subsidence across the longwall panels and the corresponding ground movements are compared to the model’s output and the results analysed. A discussion of the discrepancies between the GIFM models and the behaviour of complex geological strata is presented. The GIFM method is found to be a powerful tool when applied to complex extraction configurations and can produce useful output for mining subsidence assessments. Of particular importance is its ability to provide both tensile and compressive strain information over the whole affected areas which would otherwise not have been available for the assessment of damage potential to surface structures.  相似文献   

3.
Summary The theoretical model of the relationship between sub-surface and surface subsidence movements proposed earlier by the authors of this paper is briefly described and further tested against another case history example. Using this model, the magnitudes of the maximum subsidence, tilt and horizontal strain at sub-surface horizons between the ground surface and seam level are predicted in terms of the magnitudes of the corresponding components at the surface due to the extraction of subcritical panels with a wide range of width-depth ratios and the results presented in the form of nomographs and tables. These graphs and tables could be used to estimate the maximum subsidence, tilt and horizontal strain at any chosen sub-surface horizon associated with the extraction of a subcritical panel from the known corresponding maximum values at the surface.The proposed theoretical model can also be used to predict sub-surface subsidence components at any point within the zone influenced by the extraction of a panel from the corresponding surface subsidence components which may be obtained from field measurements or pre-calculated using any existing method of surface subsidence prediction. As an example, the profiles of surface and sub-surface subsidence at various horizons between the ground surface and the seam level resulting from the extraction of an assumed sub-critical longwall panel are predicted using the theoretical model together with the empirical method of surface subsidence prediction. The pattern of sub-surface subsidence movements in the strata overlying the panel is examined.  相似文献   

4.
Some villages and bridges are located on the ground surface of the working district no. 7 in the Wanglou Coal Mine. If longwall mining is adopted, the maximum deformation of the ground surface will exceed the safety value. Strip mining is employed for the working district no. 7 which is widely used to reduce surface subsidence and the consequent damage of buildings on the ground surface. To ensure the safety of coal pillars and improve the recovery coefficient, theoretical analysis and numerical simulation (FLAC 3D) were adopted to determine the coal pillar and mining widths and to discuss the coal pillar stress distribution and surface subsidence for different mining scenarios. The results revealed that the width of coal pillars should be larger than 162 m, and the optimized mining width varies from 150 to 260 m. As the coal seam is exploited, vertical stress is mainly applied on the coal pillar, inducing stress changes on its ribs. The coefficient of mining-induced stress varies from 2.02 to 2.62 for different mining scenarios. The maximum surface subsidence and horizontal movement increase as the mining width increases. However, when the mining width increases to a certain value, increasing the pillar width cannot significantly decrease the maximum subsidence. To ensure the surface subsidence less than 500 mm, the mining width should not be larger than 200 m. Considering the recovery coefficient and safety of the coal pillar, a pillar width of 165 m is suggested.  相似文献   

5.
Surface subsidence can cause many environmental problems and hazards (including loss of land area and damage to buildings), and such hazards are particularly serious in coal mining districts. Injecting grout into the bed separation in the overburden has been proposed as an effective control measure against surface subsidence during longwall mining. However, no field trials of this technique have been implemented in mines under villages in China, and thus, its ability to control subsidence in such areas has yet to be demonstrated. In this study, field trials using this technique were carried out during longwall mining under villages in the Liudian coal mine, China. The maximum surface subsidence observed after the extraction was only 0.298 m, which accounts for 10 % of the mining height and is 79 % less than the predicted subsidence. Moreover, no damage occurred to the village buildings either during or after extraction and these buildings remain stable. Thus, this study represents the first successful attempt to control surface subsidence under villages in China using grout injection during longwall mining.  相似文献   

6.
闫书缘  杨科  廖斌琛  涂辉 《岩土力学》2013,34(9):2551-2556
为研究深部近距离煤层群下向卸压开采高应力演化的特征,根据潘二煤矿深部近距离煤层群8煤和6煤地质与开采技术条件,设计了下向卸压开采的二维相似材料模拟试验模型,对8煤和6煤开采引起的采动应力进行监测。系统分析了8煤下向开采与6煤开采后的采场围岩采动应力、岩层运移及不规则煤柱对采动应力演化的影响,获得了近距离煤层群8煤下向卸压开采的顶底板采动高应力演化特征及6煤回采期间覆岩运移、采动应力裂隙演化和来压特征,得出了下向卸压开采不规则煤柱对采动应力、裂隙分布的影响规律。研究不仅为以采动高应力演化为主导作用的煤岩动力灾害防治提供了理论基础,也为卸压开采采场参数设计与优化提供了技术支撑。  相似文献   

7.
This paper investigates various multiseam mining related parameters using mine site specific data and numerical simulations. Two important mining effects—subsidence and stress—are analysed for different possible mining layouts. A geological mine dataset has been used to generate a numerical model. The predicted surface subsidence magnitude and surface profile have been compared under different scenarios to assess potential options in multiseam mining strategies. The effects that seam separation distances, mining offset, panel layout and panel orientation each have on surface subsidence and chain pillar stress magnitude have been investigated. The numerical simulation shows that ascending or descending mining directions have little impact on controlling the surface subsidence in multiseam mining and predicted an almost identical maximum stress development at the chain pillars. Numerical simulations infer that the orientation of the top panels control the subsidence profile.  相似文献   

8.
煤矿开采后采空区上覆岩层变形是一个长期过程,往往严重影响后期穿越采空区隧道的施工建设和长期运营.新建桑掌隧道是穿越采空区的典型案例,准确预测采空区残余变形对隧道的影响是保障工程安全的关键.本文采用玻兹曼函数对等价变采厚概率积分法进行优化,并引入时间函数,提出一种改进的变采厚概率积分法.采用该方法对山西省阳泉二矿4个停采...  相似文献   

9.
In underground coal mines, the failure of overlying strata can have disastrous effects where the working face is overlain by thin bedrock covered with thick alluvium. Roof failure under these conditions can cause a massive water and sand inrush. This paper presents a case study for a design to prevent such disasters in the Baodian mine, China. First, the engineering geological and hydrogeological conditions of the overlying lithified strata and the alluvium were obtained from field and laboratory studies. Numerical models were then built with different bedrock thicknesses using distinct-element modelling software. The deformation, failure, and subsidence of the overlying strata during simulated coal mining were studied using these computer models. Finally, the results of the model studies were combined with the geological data to design a reasonable layout for the longwall panel to be mined in the Baodian mine. Initial results showed that the alluvium was somewhat impervious and water-poor. The models showed that the first caving and weighting intervals of the roof decreased with decreasing bedrock thickness, and decreasing bedrock thickness also increased maximum subsidence of the alluvium. The maximum height of the caving zone and the minimum height of the sand-prevention coal and rock pillars were 34 m and 46 m, respectively. Knowing this allowed a somewhat shorter (204 m) but safe working face to be designed. This research provides a good background for the design of safe mines under similar conditions.  相似文献   

10.
A mine scale numerical analysis of modern day longwall using a 3D Cosserat continuum method has been presented. The effect of mine specific geological conditions on viability of introducing a modern day longwall is comprehensively investigated and analysed in this paper. The various longwall parameters like chock (face support) convergence and strata caving mechanism are evaluated. The varying thickness of the sandstone present in the roof can be seen to have a strong impact on the magnitude and pattern of chock convergence. The paper also discusses the performance of chocks with different capacities under identical conditions. The effect of overlaying sandstone properties and width of the longwall panels have also been investigated. The analyses carried out in this study is expected to provide valuable process guidance during the mine design in relation to selecting the optimal mine geometry and support capacity so that the potential mining hazards could be minimized.  相似文献   

11.
为了掌握厚松散层覆盖地区地表在采动过程中的动态移动变形情况,以地表移动观测站实测数据为基础,获得厚松散层开采地表动态移动参数在开采过程中的变化规律,以及走向主断面方向上任意时刻、任意点的下沉速度预计公式。结果表明:当工作面推过最大下沉点170 m左右时,该点的下沉速度达到最大值,其值为22.85 mm/d;地表点最大下沉速度值及其滞后距随工作面开采距离的增大而增加,当工作面推进距离达到600 m左右后,两者增加的幅度逐渐减小,并分别达到稳定值22.00 mm/d和150 m,认为此后的采动过程是地表点下沉速度曲线以固定形状与工作面保持一定的滞后距随开采不断向前移动;参考国内松散层下开采案例,通过多元线性回归分析得到地表动态移动变形参数与地质及开采技术参数之间的关系式;最后根据动态移动参数在采动过程中的变化规律,建立了走向断面上任意时刻、任意点的下沉速度预测公式,通过预测值与实测值的对比,认为预测结果能够满足工程实践需要。  相似文献   

12.
Domestic water supply impacts by underground coal mining in Virginia, USA   总被引:2,自引:0,他引:2  
 Underground coal mining can affect wells and springs used as water supplies. In Virginia, concerns over such impacts are felt by both surface owners and coal-mining firms. Virginia's geologic history has caused faults and fractures to be common in its coalfield region, relative to other Appalachian coal-mining areas. The results of 73 investigations of alleged domestic water supply impacts by underground mining were analyzed; the investigations were conducted by the Virginia Division of Mined Land Reclamation (VDMLR). This analysis was conducted with reference to guidelines that define a primary zone of underground mining influence where dewatering of aquifers is to be expected. The VDMLR data set included 27 investigations of alleged water supply impacts by partial-extraction room-and-pillar mines, 41 investigations of high-extraction room-and-pillar mines, and 4 investigations of longwall mines. VDMLR investigators found that 14 of 16 water supplies within the primary zone of influence were likely to have been affected by pillar-retreat mining, but no water supplies within the primary zone of influence for longwall and room-and-pillar mines were represented in the data base. VDMLR investigators found 42 of 56 water supplies outside of the primary zones were likely to have been affected by mining; these cases represented room-and-pillar, pillar-retreat, and longwall mining. Geologic circumstances not directly related to subsidence were found to be responsible for 31 of these 42 impacts. These geologic circumstances included subsurface fractures and other geologic features acting as aquifers that were drained by underground mining operations. VDMLR investigators also found some of the investigated water losses to have been caused by factors other than mining. These results demonstrate the inherent difficulties of any attempt to rigidly define a "zone of underground mining impact" based solely on mine subsidence effects, especially in regions where geologic faults and fractures are common such as the southwest Virginia coalfield. Received: 4 August 1995 · Accepted: 23 October 1995  相似文献   

13.
A Comprehensive Study on Subsidence Control Using COSFLOW   总被引:1,自引:0,他引:1  
Increasingly, mine subsidence is becoming a major issue of community concern. Among the measures of subsidence control, a more effective and economical technology, namely Overburden Grout Injection Technology (OGIT), is recently developed in China and Australia by injecting waste material into the bed separations during longwall mining to achieve subsidence control. The OGIT is proposed for the subsidence control in West Cliff Colliery located at the Southern Coalfield of the Sydney Basin, Australia. The three-dimensional finite element code COSFLOW is applied to investigate in a detail the bed separation developing with longwall mining and the effect of grout injecting into the separations in order to guide the subsidence control design when using the OGIT in West Cliff Colliery longwall mining practice.  相似文献   

14.
无人机遥感技术在采煤地面塌陷监测中的应用   总被引:1,自引:0,他引:1  
为研究无人机遥感技术在采煤地面塌陷监测中的应用,以宁东煤炭基地金凤煤矿011805综采工作面为例,探讨了利用无人机遥感技术进行地表裂缝解译、地面沉降量计算和地面塌陷规律研究的方法。结果表明:无人机飞行航高可根据需要识别的地表裂缝宽度确定,地形平坦地区识别2 cm地表裂缝的飞行航高一般应不超过143 m;地表裂缝宜于采用基于光谱、延长度和紧密度规则的面向对象的信息提取方法进行自动识别,在采用这种方法发现地表塌陷裂缝时宜采用基于边缘检测的图像分割模型和基于Full Lambda Schedule的图像融合模型;对无人机遥感地表高程值进行拟合校正可近似获得采煤工作面地表下沉量和下沉系数,说明无人机遥感技术可应用于采煤地面沉降量监测;综采工作面内地表裂缝数量多,总体垂直回采方向排列,切眼和顺槽附近地表裂缝数量少,总体平行顺槽和切眼展布。   相似文献   

15.
Failure mechanisms of the rock mass in the regions of maximum stress concentrations around a longwall face were assessed. In this respect, seismic events that result from changes in the stress field were analyzed to gain more knowledge about rock failure mechanisms in the proximity of the face area. A deep longwall mine developed at depths of about 3–3.5 km in South Africa was selected as a case study. Seismic moment tensor solutions were obtained for 32 seismic events with moment magnitudes in the range of 0.49 and 2.10. Through moment tensor decomposition, the dominant failure mechanisms were investigated by drawing focal mechanism plots. Further analysis was implemented by depicting the corresponding 3D radiation patterns of P-wave particle motions. Although the results cover various failure mechanisms, the dominant mechanisms are shear, implosional, and compressional failures. According to the results, most of the maximum principal stresses in the mine are compressive and oriented nearly vertical, which are in accordance with the gravitational collapses of the mined out areas. The results obtained from this research show that measuring and analyzing mining-induced seismicity can be a reliable measure to characterize the dominant failure mechanisms in a nondestructive manner and to provide a useful assessment of the stability of the longwall face in advance of extraction.  相似文献   

16.
Stream response to subsidence from underground coal mining in central Utah   总被引:1,自引:0,他引:1  
 Short-term geomorphic and hydrologic effects of subsidence induced by longwall mining under Burnout Creek, Utah were evaluated. During the year after longwall mining, 0.3–1.5 m of subsidence was measured near impacted reaches of the mountain stream channel. The major channel changes that occurred in a 700-m reach of Burnout Creek that was subsided from 1992 to 1993 were: (1) increase in lengths of cascades and to a lesser extent glides; (2) increases in pool length, numbers and volumes; (3) increase in median particle diameter of bed sediment in pools; and (4) some constriction in channel geometry. Most of the changes appeared short-lived, with channel recovery approaching pre-mining conditions by 1994. In a 300-m reach of the South Fork that was subsided from 1993 to 1994, only channel constriction was observed, although any impacts on pool morphology may have been confounded by heavy grazing in the riparian reaches during the dry summer of 1994. Similar near-channel sedimentation and loss of pool volume between 1993 and 1994 were noted throughout Burnout Creek and in adjacent, unmined James Creek. Subsidence during the 3-year period had no effect on baseflows or near-channel landslides. Received: 10 April 1998 · Accepted: 21 September 1998  相似文献   

17.
Mining subsidence and its effect on the environment: some differing examples   总被引:14,自引:3,他引:11  
 The impact of mining subsidence on the environment can occasionally be very catastrophic, destroying property and even leading to the loss of life. Usually, however, such subsidence gives rise to varying degrees of structural damage that can range from slight to very severe. Different types of mineral deposits have been mined in different ways and this determines the nature of the associated subsidence. Some mining methods result in contemporaneous subsidence whereas, with others, subsidence may occur long after the mine workings have been abandoned. In the latter instance, it is more or less impossible to predict the effects or timing of subsidence. A number of different mineral deposits have been chosen to illustrate the different types of associated subsidence that result and the problems that arise. The examples provided are gold mining in the Johannesburg area; bord and pillar mining of coal in the Witbank Coalfield, South Africa; longwall mining of coal in the Ruhr district; mining of chalk and limestone in Suffolk and the West Midlands, respectively; and solution mining of salt in Cheshire. These mineral deposits have often been worked for more than 100 years and, therefore, a major problem results from abandoned mines, especially those at shallow depth, the presence of which is unrecorded. Abandoned mines at shallow depth can represent a serious problem in areas that are being developed or redeveloped. Abstraction of natural brine has given rise to subsidence with its own particular problems and cannot be predicted. Although such abstraction is now inconsequential in Cheshire, dereliction associated with past subsidence still remains. Received: 21 October 1999 · Accepted: 14 February 2000  相似文献   

18.
The dynamic change of mining-induced stress is the main reason for large deformation of surrounding rock. To investigate the influence of mining-induced stress and deformation is important for appropriate supportive design. It also helps to raise the safety and productivity of longwall mining operations. In this paper, Weijiagou Coal Mine in Southwest China was selected as the case study. In order to research on the deformation and breakage of overlying strata, physical modeling test was carried out on the self-developed rotatable physical similar test system. By using digital image correlation (DIC) technique, the deformation of strata and development of cracks in the process of coal seam excavation were acquired, meanwhile, mining-induced stress was also monitored by pressure cell and strainmeter. According to the mechanical structure of stope, the height of the destressed zone has a significant influence on stress distribution. In order to minimize the discrepancy between the physical model test and theoretical analysis, the dimension of the plastic zone of roadway was added into the mining panel width, and the gap between the experimental and theoretical results reduced.  相似文献   

19.
对彬长矿区地面裂缝进行了详细调查,指出该矿区地面裂缝的主要为开采塌陷引起的采陷裂缝,并对采陷裂缝的发育特征进行了归类。分析认为:采深增大,基岩厚度增大,覆岩的稳定性增强,对地面裂缝的规模控制也增强,60°~70°为塌陷裂缝边界范围圈定的指标值;工作面变宽,采厚变大,会加剧地面裂缝的产生和发展;“上硬下软”的地层结构,有利控制地表移动变形,关键层厚度增大,可以明显减缓地表移动;松散层厚度愈大,抗变形能力愈大的土层,其裂缝愈不发育;V型沟谷对裂缝的形成和发展影响较小,斜坡则对裂缝的发育有加剧作用;降雨对裂缝的发育有明显的加速作用。  相似文献   

20.
Gob gas ventholes (GGV) are used to control methane inflows into a longwall operation by capturing it within the overlying fractured strata before it enters the work environment. Thus, it is important to understand the effects of various factors, such as drilling parameters, location of borehole, applied vacuum by exhausters and mining/panel parameters in order to be able to evaluate the performance of GGVs and to predict their effectiveness in controlling methane emissions. However, a practical model for this purpose currently does not exist.In this paper, we analyzed the total gas flow rates and methane percentages from 10 GGVs located on three adjacent panels operated in Pittsburgh coalbed in Southwestern Pennsylvania section of Northern Appalachian basin. The ventholes were drilled from different surface elevations and were located at varying distances from the start-up ends of the panels and from the tailgate entries. Exhauster pressures, casing diameters, location of longwall face and mining rates and production data were also recorded. These data were incorporated into a multilayer-perceptron (MLP) type artificial neural network (ANN) to model venthole production. The results showed that the two-hidden layer model predicted total production and the methane content of the GGVs with more than 90% accuracy. The ANN model was further used to conduct sensitivity analyses about the mean of the input variables to determine the effect of each input variable on the predicted production performance of GGVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号