首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

2.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   

3.
This paper presents observations of OH maser lines of W 33A for the transitions 2Π3/2, J = 3/2, F = 1 → 1 and F = 2 → 2. Two models, a thin tube and a sphere, were used for modelling the masing region and a molecular hydrogen density of about 107 cm−3 was obtained. To give a maser photon emission of the order of 1046 s−1, both models require a pump rate of 1 OH cm−3s−1, while the sphere model requires a higher pump efficiency.  相似文献   

4.
The nearby (d=5.0 pc) brown dwarf LP 944-20 was observed with the XMM-Newton satellite on 07 January 2001. The target was detected with the Optical Monitor (V=16.736±0.081), but it was not detected during the ≈48 ks observation with the X-ray telescopes. We determine a 3σ upper limit for the X-ray emission from this object of LX<3.1×1023 ergs·s−1, equivalent to a luminosity ratio upper limit of log(LX/Lbol)≤−6.28. This measurement improves by a factor of three the previous Chandra limit on the quiescent X-ray flux. This is the most sensitive limit ever obtained on the quiescent X-ray emission of a brown dwarf. Combining the XMM-Newton data with previous ROSAT and Chandra data, we derive flare duty cycles as a function of their luminosities. We find that very strong flares [Log(LX/Lbol)>−2.5] are very rare (less than 0.7% of the time). Flares like the one detected by Chandra [Log(LX/Lbol)=−4.1] have a duty cycle of about 6%, which is lower than the radio flare duty cycle (13%). When compared with other M dwarfs, LP 944-20 appears to be rather inactive in X-rays despite of its relative youth, fast rotation and its moderately strong activity at radio wavelengths.  相似文献   

5.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

6.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

7.
Auroral luminosities of the main emission lines in the aurora have been calculated for excitation by an isotopic primary electron flux with spectra of the form J(E) = AE exp (−E/E1) + B(E2)E exp (−E/E1). The variation of emissions from O and N2+ with height are shown, as are the variations of column integrated intensities and pertinent intensity ratios with the characteristic energy E2, this leading to a method of estimating the electron spectrum from ground observation.  相似文献   

8.
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff=33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1=78±3 km s−1 and a system velocity γ=6±2 km s−1. Spectrograms from the IUE Final Archive give T eff=33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1=0.19 and r 2=0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves.  相似文献   

9.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

10.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

11.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

12.
A detailed analysis of the D-region ion composition measurements performed by Zbinden et al. (1975), during a winter day of high ionospheric absorption, has been carried out. The study examines the interactive mesosphere-D-region processes which occur in such anomalous conditions and their implication for water cluster ion chemistry. Two clustering regimes for NO+ have been observed in the data. Association with N2 is identified as the dominant process below 76 km. Between 76 and 78 km altitude the effective loss rate of NO+ drops by two orders of magnitude. Above 77 km, the three-body reaction NO+ + CO2+M→NO+CO2+M seems to be the main NO+ loss. A mesospheric temperature profile could be derived from the ion composition data. This indicates the presence of a strong inversion above 76 km altitude. The wavelike structure obtained, is shown to be consistent with in situ winter temperature measurements. The sharp suppression of the N2 association reaction could, thus, be explained by an increase in the collisional break-up of the NO+N2 ion because of the enhanced temperature. In conclusion, our study indicates that, besides the increase in the production of NO+ and O2+, due to an enhancement in the minor ionizable constituents, an additional thermal mesosphere-D-region interaction seems necessary to explain this winter anomalous ion composition data.  相似文献   

13.
We report new calculations of the cooling rate of primordial gas by the HD molecule, taking into account its ro-vibrational structure. The HD cooling function is calculated including radiative and collisional transitions for   J ≤ 8  rotational levels, and for the vibrational levels v = 0, 1, 2 and 3. The ro-vibrational level population is calculated from the balance equation assuming steady state. The cooling function is evaluated in the ranges of the kinetic temperatures, T k, from 102 to  2 × 104 K  and the number densities, n H, from 1 to  108 cm−3  . We find that the inclusion of collisional ro-vibrational transitions increases significantly the HD cooling efficiency, in particular for high densities and temperatures. For   n H≳ 105  and   T k∼ 104 K  the cooling function becomes more than an order of magnitude higher than previously reported. We give also the HD cooling rate in the presence of the cosmic microwave radiation field for radiation temperatures of 30, 85 and 276 K (redshifts of 10, 30 and 100). The tabulated cooling functions are available at http://www.cifus.uson.mx/Personal_Pages/anton/DATA/HD_cooling/HD_cool.html . We discuss the relevance to explore the effects of including our results into models and simulations of galaxy formation, especially in the regime when gas cools down from temperatures above ∼3000 K.  相似文献   

14.
To study the climatological role of ozone in the Precambrian atmosphere and the consequences of its reduction for the ultraviolet environment of the early biosphere, a coupled one-dimensional radiative-convective and photochemical model has been developed. Oxygen levels between 10−5 and 1 time the present atmospheric level (PAL) are considered. It is shown that when the ice-albedo feedback is taken into account, relatively important temperature decreases are associated with the ozone changes linked to the progressive decrease of the oxygen level from 1 PAL to smaller values.

A similar study is performed for enhanced atmospheric CO2 pressures (Pco2). In these conditions, the ozone column is increased at low O2 concentrations with respect to the Pco2 = 1 PAL case. Consequently, the larger CO2 concentration in the ancient atmosphere could have contributed to strengthen the ultraviolet screening of ozone. The surface temperature response to the ozone decrease, as well as the thermal profiles are also analyzed in these CO2-rich models. A possible evolutionary scenario of atmospheric O2 and CO2 is discussed.

The consequences of these calculations for the ultraviolet environment of the primitive biosphere is discussed with a quantitative model calculating bacterial surviving rates. According to this model, the minimum ozone column being tolerable by unprotected bacteria would fall between 1 × 1018 and 4 × 1018 cm−2, depending on the bacterial species considered and corresponding to an O2 level somewhat lower than 10−2 PAL. For the coccoid blue-green alga Agmenellum quadruplicatum, this minimum ozone column would be of 4.5 × 1018, a value which is only slightly less than the presently observed column in the spring time ozone hole of Antarctica.  相似文献   


15.
The collapse of marginally Jeans-unstable primordial gas clouds in the presence of a UV radiation field is discussed. Assuming that the dynamical collapse proceeds approximately in an isothermal self-similar fashion, we investigate the thermal evolution of the collapsing central core until H2 cooling dominates photoheating and the temperature drops to below 104 K. Consequently, the mass of the cooled core is evaluated as M cool=3.6×106 M ( I 21/1)−0.32. This scale depends only on the incident UV intensity, and provides a lower limit to the mass of collapsed objects in the UV radiation field.  相似文献   

16.
Radio noise observations at frequencies of 0·700 Mc and 2·200 Mc were made at altitudes between 3000 and 11,000 km from a Blue Scout Jr. high-altitude rocket probe on 30 July 1963. A steady background flux of (7·5−3+6) × 10−19 W m−2)(c/s)−1 at 0·700 Mc and (1·8+1.0−0.5 × 10−19 W m−2 (c/s)−1 at 2·200 Mc was observed. Assuming a galactic origin of the observed fluxes at both frequencies, the averaged sky brightnesses are b(0·700 Mc) = (6−3+5) × 10−20 W m−2 (c/s)−1 sr−1b(2·200 Mc) = (1.4+1.0−0.5 × 10−20 W m−2 (c/s)−1 sr−1 The observed brightness at 2·200 Mc is in reasonable agreement with the results of other observers. The apparent brightness at 0·700 Mc is, however, greater than was expected from previous observations. An alternative source of the 0·700 Mc flux in the terrestrial exosphere, as well as characteristics of several noise bursts observed during the flight, is briefly discussed.  相似文献   

17.
We compare the tau neutrino flux arising from the galaxy and the earth atmosphere for 103E/GeV1011. The intrinsic and oscillated tau neutrino fluxes from both sources are calculated. The intrinsic galactic ντ flux (E103 GeV) is calculated by considering the interactions of high-energy cosmic-rays with the matter present in our galaxy, whereas the oscillated galactic ντ flux is coming from the oscillation of the galactic νμ flux. For the intrinsic atmospheric ντ flux, we extend the validity of a previous calculation from E106 GeV up to E1011 GeV. The oscillated atmospheric ντ flux is, on the other hand, rather suppressed. We find that, for 103E/GeV5×107, the oscillated ντ flux along the galactic plane dominates over the maximal intrinsic atmospheric ντ flux, i.e., the flux along the horizontal direction. We also briefly mention the presently envisaged prospects for observing these high-energy tau neutrinos.  相似文献   

18.
We study the effect of primordial non-Gaussianity on the development of large-scale cosmic structure using high-resolution N -body simulations. In particular, we focus on the topological properties of the 'cosmic web', quantitatively characterized by the Minkowski functionals (MFs), for models with quadratic non-linearities with different values of the usual non-Gaussianity parameter f NL. In the weakly non-linear regime (the amplitude of mass density fluctuations σ0 < 0.1), we find that analytic formulae derived from perturbation theory agree with the numerical results within a few per cent of the amplitude of each MF when | f NL| < 1000. In the non-linear regime, the detailed behaviour of the MFs as functions of threshold density deviates more strongly from the analytical curves, while the overall amplitude of the primordial non-Gaussian effect remains comparable to the perturbative prediction. When smaller-scale information is included, the influence of primordial non-Gaussianity becomes increasingly significant statistically due to decreasing sample variance. We find that the effect of the primordial non-Gaussianity with  | f NL| = 50  is comparable to the sample variance of mass density fields with a volume of 0.125( h −1 Gpc)3 when they are smoothed by Gaussian filter at a scale of 5  h −1 Mpc. The detectability of this effect in actual galaxy surveys will strongly depend on residual uncertainties in cosmological parameters and galaxy biasing.  相似文献   

19.
We report intermediate resolution H spectroscopy of the black hole candidate Nova Muscae 1991 during quiescence. We classify the companion star as a K3-K4V which contributes 85±6 percent to the total flux from the binary. The photospheric absorption lines are broadened by 106±13 kms−1 with respect to template field stars, leading to a system mass ratio of q =M1/M2 = 7.8−2.0+3.4. Doppler imaging of the H line shows strong emission coming from the secondary star (EW=3.1±0.6Å) which we associate with chromospheric activity. However, the hot-spot is not detected and this may indicate a lower mass transfer rate than in other X-ray transients of comparable orbital periods. The surface brightness distribution of the accretion disk in H follows a relation I∝R−1.1, less steep than typically observed in cataclysmic variables. Updated system parameters are also presented.  相似文献   

20.
Effective collision strengths for electron-impact excitation of the N-like ion Ne  iv are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of Ne  iv , consisting of eight n  = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n  = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T (K) = 3.6 to log T (K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T (K) = 3.7 to log T (K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号