首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对青藏高原东部地区近几年部分探空资料的分析,得出了一些有意义的结论。结果表明:冬季,青藏高原东侧地区在对流层下部存在明显的逆温现象,在逆温层之下,大气相对湿度大,水汽随高度减小的幅度小,大气处于中性层结状况;在此逆温层之上,大气相对湿度小。在逆温层底部有大量的水汽堆积,在空中形成明显的逆湿层,而在高原主体上并没有此逆温层的存在,高原东侧各站逆温层底的高度差别不大。夏季,青藏高原东侧地区20时可以存在明显的混合层,混合层的高度在成都站最小,重庆站最大,而高原主体混合层高度大于东侧地区。旱年混合层高度大于涝年。8时和20时,冬季大气温、湿垂直特性变化不明显,而夏季具有明显的变化。夏季,降水过程明显抑制混合层的发展,在暴雨过程及其前后,混合层有明显的成熟、消亡、重新建立的特征。  相似文献   

2.
3.
我国对流层臭氧增加对气温的影响   总被引:5,自引:1,他引:5  
利用耦台的区域气候模式和大气化学模式模拟对流层臭氧的产生、分布和对辐射传输、地表温度、气温等的影响。通过对比模拟发现:对流层中臭氧的增加基本使大气顶晴空辐射强迫为正;对流层中的臭氧含量变化能影响云量且进一步影响温度。由于对流层臭氧增加导致的晴空辐射强迫在4月份最大、1月份最小。  相似文献   

4.
Ground-based lidars can provide continuous observations of tropospheric humidity profiles using the Raman scattering of light by water vapour and nitrogen molecules. We will present specific humidity profiles obtained at the high Arctic location Ny-Ålesund (Spitsbergen, 79°N). Under nighttime conditions the observations cover a range from about 500 m altitude up to the upper troposphere. Daylight limits the observations to the lower troposphere, depending on atmospheric transmission and the water vapour content. In a case study on 29 January, simultaneous observations of humidity and aerosol extinction show distinct differences in the various altitudes during the advection of aerosol-rich air masses. In the boundary layer, the aerosol is less affected by the humidity. In the free troposphere, the lidar ratio was observed to be up to 60 sr with some evidence for the uptake of water vapour by the aerosol particles. In another case study from 28 February 2002, the influence of the mean wind direction and the orography on the water vapour concentration near the ground and in the free troposphere will be discussed. During wintertime, a humidity inversion up to about 1.5 km altitude with dry air near the ground has frequently been found with wind from the southeast. Such local effects and small-scale structures observed by stationary lidar mostly cannot be resolved by other sounding methods like passive satellite soundings.  相似文献   

5.
Several years of measurements of ozone, hydrocarbons, sulphate and meteorological parameters from Spitsbergen in the Norwegian Arctic are presented. Most of the measurements were taken on the Zeppelin Mountain at an altitude of 474 m a.s.l. The focus is the episodes of ozone depletion in the lower troposphere in spring, which are studied in a climatological way. Episodes of very low ozone concentrations are a common feature on the Zeppelin Mountain in spring. The low ozone episodes were observed from late March to the beginning of June. When the effect of transport direction was subtracted, the frequenty of the low ozone episodes was found to peak in the beginning of May, possibly reflecting the seasonal cycle in the actual depletion process. Analyses based on trajectory calculations show that most of the episodes occurred when the air masses were transported from W-N. Ozone soundings show that the ozone depletion may extend from the surface and up to 3–4 km altitude. The episodes were associated with a cold boundary layer beneath a thermally stable layer, suppressing mixing with the free troposphere. The concentration of several individual hydrocarbons was much lower during episodes of low ozone than for the average conditions. The change in concentration ratio between the hydrocarbons was in qualitative agreement with oxidation of hydrocarbons by Br and Cl atoms rather than by OH radicals.  相似文献   

6.
文中分析了 1996年 8月 1日发生在西宁 (36 .4 3°N ,10 1.4 5°E ,海拔 :2 2 96m)地区对流层异常臭氧次峰现象。观测资料揭示了高空低压槽东移是臭氧次峰的主要天气特征。三维后向轨迹计算表明 ,尽管代表臭氧次峰的气团可以追溯到中亚地区 ,但是明显的气团向下输送则发生在新疆、青海间的高空低压槽内。中尺度模拟进一步确认了对流层顶折叠和平流层向下输送是臭氧次峰出现的动力机制。臭氧次峰在对流层高度位置与准无辐散层有关  相似文献   

7.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   

8.
In early 2008, a persistent cold and snowy weather process occurred in South China. Severe freezing rain (FR) and blizzards hit the region, which was not seen in the past 50 years. This work studied the disaster at its most severe stage (25 January-2 February 2008) and addressed the reason for the occurrence of three rainfall types and particularly the FR that resulted from the temperature inversion and low surface temperature. Evidence suggests that the south-to-north distribution of rainfall, FR, and snowfall was determined by the surface temperature conditions and the stratification features of the northward-tilting front in the mid-lower troposphere over different parts of South China. Under the above frontal conditions,the temperature inversion in the mid-lower troposphere and the cold ground temperature took place and the FR formed. The temperature layer (> 0°C) inside the inversion in this region depended on necessary intensity, depth, and height of the inversion, i.e., the depth of the inversion can be neither too thick or low nor too thin or high. For those too thick and low (too thin and high) inversions, the precipitation fell as rain (snow and ice pellets). In the early 2008 case, the 0-6°C layer occupied 650-850 hPa, below which was the sub-freezing level with temperature < 0°C. With the presence of the low sub-freezing level, FR or ice damage could occur even at the 0-1°C surface temperature condition. Besides, even in the absence of a suitable inversion, a low ground temperature might have made ice-covered water and supercooled drops or water from melted ice freeze rapidly into ice at the surface, and the ground ice maintained and accumulated,which resulted in the severe disaster.  相似文献   

9.
Based on the ozone and aerological sounding data at Syowa Station (69o 00'S, 39o35'E), Antarctica during 1966-1979 and Lhasa Station (39o40'N, 91o08'E), Tibetan Plateau during 1979-1983, the processes of temperature increase in spring over the Tibetan Plateau and the Antarctica are compared in this paper, and the relationship between the increase of air temperature and variation of total ozone and ozone partial pressure is analyzed. It is found that: (1) The process of temperature increase over the Tibetan Plateau is quite different from that over the Antarctica in spring. This is a proof that the heating effects of their ground surface on the atmosphere are of great difference; (2) Sudden increase of total ozone is always associated with sudden warming in the stratosphere over the Antarctica, but sudden decrease of total ozone is associated with sudden warming in the troposphere over the Tibetan Plateau in spring; and (3) There is a good positive correlation, with a correlation coefficient of about 0.85, between the temperature increase and variation of ozone partial pressure in the stratosphere over the Antarctica in spring.  相似文献   

10.
During the summer (8 June through 3 September) of 2008, 9 ozone profiles are examined from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (O3) variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period) show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL) events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of reduced O3 concentrations during the monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa), a significant increase in O3 concentrations (10–20 ppb) occur which we suggest is caused by enhanced biogenic NOX emissions from Sahelian soils following rain events on 28 June and 1 July. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, reducing ozone concentrations through heterogeneous chemical processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOX from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, lower ozone concentrations are observed and modeled which we attribute to the dry deposition of ozone and episodes of ozone poor air that is horizontally transported into the Sahel from low latitudes by African Easterly Waves (AEWs).  相似文献   

11.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

12.
利用ACTIVE(aerosol and chemical transport in tropical convection)试验资料,取2006年1月20日澳大利亚北部达尔文岛附近发生的一次飑线强对流天气的AE17航次和2006年1月27日无对流天气的AE21航次飞行路径中的探测资料,对澳大利亚达尔文地区夏季风盛行期间发生的有无强对流发生时O3和CO浓度垂直分布变化进行对比,考察强对流性天气发生对O3和CO浓度垂直输送作用。深对流云内强烈的垂直上升运动将O3和CO等化学气体携带输送至对流层上部并在对流层顶堆积,从而在对流层上部产生浓度峰值。当有强对流发生,飞机进入对流云上层时,O3浓度和CO浓度升高,O3和CO浓度变率增大,在对流层上部浓度出现峰值;当飞机飞出对流云时,O3和CO浓度相对较低,在对流云外出现谷值。在无对流发生的条件下O3和CO浓度相对较小,浓度变率也较小,无峰值产生。分析表明:O3和CO浓度分布不仅与强对流的垂直输送作用关系密切,且与气象要素垂直和水平分布以及动力输送过程密切相关。  相似文献   

13.
对防城港市影响最大的首要空气污染物为PM2.5和O3,空气污染日主要集中在秋冬季。空气污染按500 hPa环流形势可分为西北气流型、偏西气流型及西南气流型;按地面气压场可分为冷高压脊型、均压型、高压后部低压前部型。在无境外输入的情况下,PM2.5产生在风速小、气温较低、能见度小、湿度较大并且无降雨或降雨不明显的天气环境里,而O3产生在高温、低湿、日照充足、风速较大和能见度好的天气环境里。在垂直运动方面,中低层的下沉气流利于空气污染物累积。在温度层结分布方面,700~850 hPa的低层存在的逆温层对PM2.5浓度增加非常重要,近地面的逆温层对PM2.5浓度增加的作用要比低层弱,而近地面的逆温层对O3浓度的增加非常重要,但是低层的逆温却不重要。  相似文献   

14.
青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换   总被引:3,自引:0,他引:3  
利用臭氧和温度探空廓线,结合NCEP/NCAR资料、TOMS臭氧总量卫星观测资料和NOAAHYSPLIT后向轨迹模式资料,通过个例分析探讨了影响青藏高原(下称高原)附近臭氧垂直分布的因子和过程。结果表明,动力过程是影响高原上空臭氧垂直分布的主要因子,特别是中高纬度高臭氧浓度的空气向南入侵会导致高原上空臭氧浓度的升高,影响高原上空臭氧低谷的范围大小和形态;尽管大气化学过程对高原上空的平流层下层臭氧垂直分布的影响并不显著,但是高原上空的平流层臭氧变化与温度变化具有较好的一致性。同时还发现,对流层上层的强反气旋系统,特别是中高纬度阻塞高压的边缘有明显的平流层空气向对流层入侵,从而导致对流层内臭氧浓度的增加。  相似文献   

15.
计算并分析了景德镇市出现雨夹雪、一般降雪、大雪(分别简称为Ⅰ类、Ⅱ类、Ⅲ类降雪)形势场、本站要素、层结资料,概括了3类降雪的天气学概念模型。分析结果表明:(1)3类降雪天气过程中,高空500 hPa有强盛的西南偏西气流,且随着降雪强度的增大,西南风速逐渐增大。地面则有较强冷空气堆积,位于贝加尔湖西部的冷高压中心气压在1 050 hPa以上,景德镇处于冷高压底部。925 hPa 30°N附近冷空气势力强,气温低。Ⅰ类降雪的主要影响系统是在江西省北部上空交汇的冷、暖平流,Ⅱ类、Ⅲ类则是850 hPa的切变线,出现Ⅲ类降雪时切变线位于景德镇附近,而出现Ⅱ类降雪时切变线则稍偏南,位于赣中。(2)地面气温变化是降水相态改变的关键,气温越低,越易出现降雪。从大雪至雪后雨,气温逐渐上升。(3)中低层的气温,Ⅱ类降雪较Ⅰ类低;近地面层气温,Ⅲ类降雪与Ⅱ类降雪接近;700 hPa和850 hPa层气温,Ⅲ类降雪比Ⅱ类降雪偏高。(4)Ⅰ类降雪常伴有逆温,但在向Ⅱ类降雪的转换过程中,逆温逐渐减弱,到Ⅲ类降雪时,逆温消失。(5)3类降雪均存在明显的风垂直切变,低层风弱,高层风强,且随着降雪强度的增大,表现愈加明显。  相似文献   

16.
The Pic 2005 field campaign took place from 13 June to 7 July 2005 close to the high-altitude permanent atmospheric observatory Pic-du-Midi (PDM), situated at 2875 m asl in the French Pyrenees. The experimental set-up combined in situ ground-based observations at PDM with ozone lidar measurements at two lower sites in close vicinity (600 m asl/28 km away, and 2380 m asl/500 m away). Such an experimental configuration is appropriate to address the question of the vertical layering of the chemical atmosphere in a mountain area and above the plain nearby, and how this influences measurements conducted on a mountain summit under the influence of horizontal transport at regional scale, and vertical transport at local scale. Forecast tools made it possible to plan and carry out 6 one-day Intensive Observation Periods (IOPs), mostly in anticyclonic conditions favoring local thermally induced circulations, with and without local pollution in the lower troposphere.It was thus possible to document i) ozone diurnal variations at PDM; ii) correlation between ozone measurements at PDM and their counterparts at the same altitude in the free troposphere; iii) ozone variability in the vicinity of PDM.The field campaign provided direct experimental evidence that at daytime in the encountered conditions (mostly anticyclonic), PDM failed in a large extent to be representative of the troposphere above the surrounding flat areas at similar altitude. First, ozone daily averages at PDM were found lower than their free-tropospheric counterpart. Thermally induced circulations and convection pumping clean air from the rural boundary layer can account qualitatively for ozone depletion observed at PDM during daytime. However the surface measurements do not support the hypothesis of direct lifting of near-surface air masses up to PDM. Thus, mixing with free-tropospheric air, photochemistry and surface deposition in the valleys appear to be needed ingredients to account quantitatively for the observed variations (in proportions that further studies should determine). Second, ozone variability was found to be much lower at PDM than in the free troposphere—again an indication of atmospheric mixing. In particular at daytime, the PDM observatory did not allow for detection of ozone-rich layers simultaneously visible above the plain. Beyond these first results, the data set presented here paves way to detailed studies of the IOPs.  相似文献   

17.
The unmanned aerial system SUMO (Small Unmanned Meteorological Observer) has been used for the observation of the structure and behaviour of the atmospheric boundary layer above the Advent Valley, Svalbard during a two-week period in early spring 2009. Temperature, humidity and wind profiles measured by the SUMO system have been compared with measurements of a small tethered balloon system that was operated simultaneously. It is shown that both systems complement each other. Above 200?m, the SUMO system outperforms the tethered balloon in terms of flexibility and the ability to penetrate strong inversion layers of the Arctic boundary layer. Below that level, the tethered balloon system provides atmospheric profiles with higher accuracy, mainly due to its ability to operate at very low vertical velocities. For the observational period, a numerical mesoscale model has been run at high resolution and evaluated with SUMO profiles reaching up to a height of 1500?m above the ground. The sensitivity to the choice of atmospheric boundary-layer schemes and horizontal resolution has been investigated. A new scheme especially suited for stable conditions slightly improves the temperature forecast in stable conditions, although all schemes show a warm bias close to the surface and a cold bias above the atmospheric boundary layer. During one cold and cloudless night, the SUMO system could be operated nearly continuously (every 30?C45?minutes). This allowed for a detailed case study addressing the structure and behaviour of the air column within and above Advent Valley and its interaction with the local topography. The SUMO measurements in conjunction with a 10-m meteorological mast enabled the identification of a very stable nocturnal surface layer adjacent to the valley bottom, a stable air column in the valley and a strong inversion layer above the summit height. The results indicate the presence of inertial-gravity waves during the night, a feature not captured by the model.  相似文献   

18.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

19.
利用成都地区环境空气质量指数资料、常规气象观测资料和ECMWF第五代全球再分析资料(ERA5),对2017年成都市冬季一次持续重雾霾过程的成因进行分析,并利用HYSPLIT后向轨迹模式分析此次污染物的来源。结果表明:此次重雾霾过程的成因是高低空相配合的不利环流形势,风速较低,垂直切变小,层结稳定,对流层中低层存在干暖空气构成逆温层,抑制了污染物的扩散。根据模式的结果,此次污染气团主要来源于较远距离的西北地区、四川盆地西南地区及盆地内部流转的气团。  相似文献   

20.
国产臭氧探空仪观测数据质量分析   总被引:2,自引:1,他引:2       下载免费PDF全文
对国产臭氧探空仪从2001年4月到2004年9月在北京观测的臭氧垂直分布数据的质量进行分析。对国产臭氧探空仪系统基本测量数据(包括电化学反应池池温、臭氧最大分压及其所在的高度、对流层顶的温度和高度)进行初步分析, 结果发现国产臭氧探空仪的稳定性仍需进一步提高。与地面多谱森臭氧总量观测相比, 国产臭氧探空积分的总量普遍要高,2002年至2003年之间的差别范围基本上保持在±20%以内。与国际普遍使用的双池型电化学(ECC型)臭氧探空观测结果相比, 国产臭氧探空观测臭氧分压在15 km以下、25~30km两个高度范围, 均要高于ECC测值。分析结果建议国产臭氧探空仪应尽快参与由全球大气本底监测(GAW)技术主持的世界臭氧探空仪标定中心进行标定, 并在现有的技术条件下, 向双池型电化学型臭氧探空仪这一方向发展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号