首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
山西耿庄金矿重晶石巨晶中多相态包裹体研究   总被引:5,自引:0,他引:5  
在山西耿庄金矿区发现的重晶石巨晶,包含有富镍黄铁矿、FeS2-Fe(Ni,Co)S2系列晶须和气液包裹体。用扫描电镜、电子探针等分析研究了重晶石和固体包裹体矿物的形貌、成分和物理性质。用激光拉曼光谱仪研究了气液包裹体成分、均一温度。结果表明:重晶石成分单一,结构发育完好;FeS2-Fe(Ni,Co)S2系列晶须成分随着晶须加粗有明显变化;富镍黄铁矿成分较为稳定。固体包裹体矿物的结晶程度高,晶体形态标准。热液为低盐度流体,其成分主要为H2O,含少量CO2,其总体密度为0.79~0.95 g/cm3。包裹体均一温度变化范围大,为134.7~269.5℃。根据本次研究成果,结合地质背景,运用晶体生长和地球化学理论,讨论了耿庄金矿重晶石形成时期的热液活动特点及方式、相关元素的地球化学行为、重晶石和固体包裹体矿物的形成条件等。认为该期热液活动中沸腾作用和混合作用表现强烈;并且热液活动过程具有明显的阶段性和原位叠加特点。  相似文献   

2.
Fluid inclusions can be used to interpret thermal history and petroleum maturation and migration relative to burial history. Temperature, pressure and composition data collected from fluid inclusions are used to determine the environment of diagenesis and the timing of cementation and migration. Cements in petroleum reservoirs contain both oil and aqueous fluid inclusions. Fluorescence spectroscopy is used to identify oil inclusions and to determine the maturity of entrapped oil. The lifetime of fluorescence induced by a pulsed laser is related to the API gravity of entrapped oil. Interpretation of fluid inclusion data depends on knowing the origin of fluid inclusions and the probability that they survive in the burial environment. Those aspects of fluid inclusion study are investigated by synthesizing oil and aqueous inclusions in calcite crystals in laboratory experiments. Examples of how fluid inclusions are used to determine the physico-chemical environments of diagenesis in petroleum reservoirs and the timing of cementation and migration are given for the Wealden Basin, England, the Mishrif Formation, Dubai, the Smackover Formation, Gulf Coast, U.S.A. and Jurassic sandstones, offshore Norway. In the Wealden Basin, temperature data from fluid inclusions are used to determine that oil migration occurred in the Cretaceous and that the reservoir rocks have been uplifted to varying degrees at a time after migration. Distribution of oil inclusions indicates that generation and migration of oil was principally in the western part of the basin. The geochemistry of oil inclusions in calcite cements from the Mishrif Formation, Dubai, are used to determine the type and maturity of entrapped oil. Temperature data from oil and water inclusions are used to relate reservoir diagenesis to burial history and the migration of oil. In deep Smackover reservoirs oil contains H2S. The origin of the H2S is examined by study of fluid inclusions containing H2S. In Jurassic sandstones, offshore Norway, fluid inclusion studies show that silica cementation is related to burial depth whereas a later calcite cementation originated from invasion of a hot fluid.  相似文献   

3.
The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carbonate rocks.The ore minerals comprise mainly chalcopyrite,with minor sphalerite,siegenite[(Co,Ni)_3S_4],and clausthalite[Pb(S,Se)].The gangue minerals are mainly quartz and dolomite,with minor albite.Four fluid inclusion types were recognized in the chalcopyrite-pyrite-dolomite-quartz veins,including CO_2-rich inclusions(type Ⅰ),low-salinity,liquid-dominated,biphase aqueous inclusions(type Ⅱ),solid-bearing aqueous inclusions(type Ⅲ),and solid-bearing aqueous-carbonic inclusions(type Ⅳ).Type I inclusion can be further divided into two sub-types,i.e.,monophase CO_2 inclusions(type Ⅰa) and biphase CO_2-rich inclusions(with a visible aqueous phase),and type Ⅲ inclusion is divided into a subtype with a halite daughter mineral(type Ⅲa) and a subtype with multiple solids(type Ⅲb).Various fluid inclusion assemblages(FIAs) were identified through petrographic observations,and were classified into four groups.The group-1 FIA,consisting of monophase CO_2 inclusions(type Ⅰa),homogenized into the liquid phase in a large range of temperatures from-1 to 28℃,suggesting post-entrapment modification.The group-2 FIA consists of type Ⅰb,Ⅲb and Ⅳ inclusions,and is interpreted to reflect fluid immiscibility.The group-3 FIA comprises type Ⅱ and Ⅲa inclusions,and the group-4FIA consists of type Ⅱ inclusions with consistent phase ratios.The group-1 and group-2 FIAs are interpreted to be entrapped during mineralization,whereas group-3 and group-4 FIAs probably represent the post-mineralization fluids.The solid CO_2 melting temperatures range from-60.6 to56.6℃ and from-66.0 to-63.4℃ for type Ⅰa and type Ⅳ inclusions,respectively.The homogenization temperatures for type Ⅱ inclusions range from 132 to 170℃ for group-3 FIAs and115 to 219℃ for group-4 FIAs.The halite melting temperatures range from 530 to 562℃ for typeⅢ b and Ⅳ inclusions,whereas those for type Ⅲa inclusions range from 198 to 398℃.Laser Raman and SEM-EDS results show that the gas species in fluid inclusions are mainly CO_2 with minor CH_4,and the solids are dominated by calcite and halite.The calcite in the hosting marble and dolomite in the hydrothermal veins have δ~(13)C_(V-pdb) values of-0.2 to 1.2‰ and-1.2 to-6.3‰,and δ~(18)O_(v-smow) values of 14.0 to 20.8 ‰ and 13.2 to 14.3‰,respectively.The fluid inclusion and carbon-oxygen isotope data suggest that the ore-forming fluids were probably derived from metamorphic fluids,which had reacted with organic matter in sedimentary rocks or graphite and undergone phase separation at 1.4-1.8 kbar and 230-240℃,after peak metamorphism.It is proposed that the Hujiayu Cu deposit consists of two mineralization stages.The early stage mineralization,characterized by disseminated and veinlet copper sulfides,probably took place in an environment similar to sediment-hosted stratiform copper mineralization.Ore minerals formed in this precursor mineralization stage were remobilized and enriched in the late metamorphic hydrothermal stage,leading to the formation of thick quartz-dolomite-sulfides veins.  相似文献   

4.
The barium deposits in Ankang and Xunyang counties,Shaanxi Province,China,occur in the northernmost part of the world-class barium metallogenic belt in south Qinling.The deposits are hosted by the Lower Silurian carbonaceous siliceous rocks,with a unique combination of barite and witherite.The homogenization temperatures of fluid inclusions in the barite are mainly concentrated between 135 and 155 ℃,whereas those from the witherite have two peaks of 165-175 ℃,and 215-225℃,respectively.Laser Raman analysis of fluid inclusions indicates that the vapor phase of fluid inclusions in barite is dominated by H_2O,although some contains N_2,H_2S,and CH_4.The compositions of the vapor and liquid phases of fluid inclusions in witherite can be divided into two end-members,one dominated by H_2O without other volatiles,and the other containing CH_4,C_2H_6,C_3H_8,C_2H_4,and C_6H_6 in addition to H_2O.CO_2,H_2S,and some CH_4 are interpreted as products of chemical reactions during mineralization.Organic gases(CH_4,C_2H_6,C_3H_8,C_2H_4,and C_6H_6) in the fluids were critical in the formation of barium sulfate versus carbonate.The δ~(34)S values of barite range from 38.26‰ to54.23‰(CDT),the δ~(34)S values of sulfides coexisting with barium minerals vary from 22.44‰ to25.11‰(CDT),and those in the wall rock from 11.60‰ to 19.06‰(CDT).We propose that the SO_4~(2-)generally experienced bacterial sulfate reduction in seawater before mineralization,and some SO_4~(2-)also experienced thermochemical sulfate reduction in hydrothermal system during mineralization.The δ~(13)C values of witherite range from-27.30‰ to-11.80‰(PDB),suggesting that carbon was sourced from organic substances(like CH_4,C_2H_4,and C_2H_6).The formation of witherite was possibly associated with thermochemical sulfate reduction,which caused the consumption of the organic gases and SO_4~(2-) in the hydrothermal solutions,consequently inhibiting barite formation.The important conditions for forming witherite include high fluid temperatures,high Ba~(2+) concentrations,CO_2 in the fluids,low HS~- concentrations,and the subsequent rapid diffusion of H_2S during thermochemical sulfate reduction of the fluids.  相似文献   

5.
Calcite veins and related sulphate–sulphide mineralisation are common in the Buda Hills. Also, abundant hypogenic caves are found along fractures filled with these minerals pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralising fluids did. The studied vein-filling paragenesis consists of calcite, barite, fluorite and sulphides. The strike of fractures is consistent—NNW–SSE—concluding a latest Early Miocene maximum age for the formation of fracture-filling minerals. Calcite crystals contain coeval primary, hydrocarbon-bearing- and aqueous inclusions indicating that also hydrocarbons have migrated together with the mineralising fluids. Hydrocarbon inclusions are described here for the first time from the Buda Hills. Mixed inclusions, i.e., petroleum with ‘water-tail’, were also detected, indicating that transcrystalline water migration took place. The coexistence of aqueous and petroleum inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that hydrocarbon-bearing fluids were diluted by regional karst water. FT-IR investigations revealed that CO2 and CH4 are associated with hydrocarbons. Groundwater also contains small amounts of HC and related gases on the basin side even today. Based on the location of the paleo- and recent hydrocarbon indications, identical migration pathways were reconstructed for both systems. Hydrocarbon-bearing fluids are supposed to have migrated north-westward from the basin east to the Buda Hills from the Miocene on.  相似文献   

6.
Summary ?Data from secondary fluid inclusions in barite and quartz occurring in strongly silicified lithologies (“Quarzite”) along the inter-Ordovician unconformity in SW Sardinia suggest that two distinct fluids are recorded in the mineral phases. (A), a high temperature (250–360 °C) – low salinity (0–6% NaCl equiv.) fluid, measured in quartz, (B), a high salinity (6–20% NaCl equiv.) – low temperature (<80–200 °C) fluid, measured in barite. Fluid (B), though less abundant than A, has also been recorded in quartz, whereas traces of fluid (A) were found in barite. The characteristics of fluid (B) make it akin to the well known saline formation waters responsible for the deposition of the post-Variscan barite and galena ores in SW Sardinia. It is inferred that at least two distinct post-depositional hydrothermal events took place, with fluids circulating along the inter-Ordovician unconformity. Fluid (A) is related to the last phases of Variscan tectonics, whereas the timing of the second hydrothermal event (fluid B) spans the interval from Permian to Mesozoic. Due to the lack of measurable primary inclusions and to the ubiquitous evidence for the stratigraphic control of the silicification, as well as to the marked deformation of the “Quarzite” horizon, it cannot be excluded that at least part of this hydrothermal event could have taken place in pre-Variscan (Silurian?) times. An alternative model is to consider the deposition of the “Quarzite” to be unrelated to pre-Variscan hydrothermal events, but to fluid circulation along Late-Variscan structures. Received July 12, 2001; revised version accepted March 11, 2002  相似文献   

7.
Farsesh barite in the central part of Iranian Sanandaj-Sirjan zone is a sample of epigenetic hydrothermal mineralization in dolomitized limestone, which provides appropriate chemicophysical conditions making the passage of mineral-bearing fluids possible. Barite veins may range from a few centimeters to 2 m in thickness that increases downward. The microthermometry measurements obtained from more than 30 fluid inclusions show relative homogenization temperatures ranging from 125 to 200 °C with an average of 110 °C for Farsesh barite deposits. The mean salinity measured proves 16 times as much as weight percentage of NaCl for barite. Coexistence of liquid- and vapor-rich fluid inclusions in barite minerals may provide an evidence of boiling in ore veins. Moreover, occurrence of bladed calcite, high-grade ore zones, and presence of hydrothermal breccia are all consistent with boiling. Thermometric studies indicate that homogenization temperatures (Th) for primary and pseudosecondary fluid inclusions in barite range from 125 to 200 °C with an average of 1,100 °C. The δ34S values of barite also lie between 8.88 and 16.6 %. The relatively narrow spread in δ34S values may suggest uniform environmental conditions throughout the mineralization field. Thus, δ34S values are lower than those of contemporaneous seawater, which indicates a contribution of magmatic sulfur to the ore-forming solution. Barite is marked by total amounts of rare Earth elements (REEs) (6.25–17.39 ppm). Moreover, chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (i.e., LREEs) from La to Sm, similar to those for barite from different origins. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in Farsesh deposit is enriched in LREEs compared with heavy rare Earth elements (HREEs). Similarity between Ce/La ratios in barite samples and those found in deep-sea barite supports its marine origin. Lanthanum and Gd exhibit positive anomalies, which are common features of chemical marine sediments. Cerium shows a negative anomaly in most samples inherited from the negative Ce anomaly of hydrothermal fluid that is mixed with seawater at barite precipitation. The available data including tectonic setting, host rock characteristics, REE geochemistry, and sulfur isotopic compositions may support a hydrothermal submarine origin for Farsesh barite deposit.  相似文献   

8.
Naturally re-equilibrated fluid inclusions have been found in quartz crystals from alpine fissures of the Western Carpathians. Re-equilibration textures, such as planar arrangement of the decrepitation clusters as well as the quartz c- and a-axis oriented fracturing indicate explosion of fluid inclusions. The extent of fracturing, which is dependent on inclusion diameters, suggests inclusion fluid overpressures between 0.6–1.9 kb. Microthermometry data are controversial with the textures because of indicating roughly fixed initial fluid composition and density during re-equilibration, although inclusion volumes have been sometimes substantially reduced by crystallization of newly-formed quartz. It is concluded that fluid loss from re-equilibrated inclusions must have been compensated for by replacing equivalent quartz volume from cracks into parent inclusion. Such a mechanism has operated in a closed system and the re-equilibration related cracks have not been connected with mineral surface. The compositional and density differences between aqueous inclusions in decrepitation clusters and CO2-rich parent inclusions cannot be interpreted in terms of classical fluid immiscibility. Moreover, monophase liquid-filled aqueous inclusions and coexisting monophase CO2 vapour-filled inclusions in the decrepitation clusters are thermodynamically unacceptable under equilibrium metamorphic conditions. The effect of disjoining pressure resulting from structural and electrostatic forces in very thin fractures is suspected to have caused density and compositional inconsistencies between parent and cluster inclusions, as well as the unusual appearance of cluster inclusions. In high-grade metamorphic conditions, the re-equilibration probably leads to boundary layer-induced immiscibility of homogeneous H2O–CO2–NaCl fluids and to formation of compositionally contrasting CO2-rich and aqueous inclusions.  相似文献   

9.
The pressure, temperature and composition of ore fluids that resulted in gold deposition in the Archean, greenstone-hosted Hutti deposit have been studied using fluid inclusions and the compositions of arsenopyrite and chlorite. Five types of fluids have been identified in fluid inclusions in quartz veins associated with mineralization. They are (1) monophase CO 2-rich fluid; (2) low-salinity (0 to 14 wt% NaCl equivalent) and high-salinity (16 to 23 wt% NaCl equiv.) aqueous fluids; (3) high-salinity (28 to 40 wt% NaCl equiv.), polyphase aqueous fluids; (4) CO 2–H 2O–NaCl fluids of low salinity (0–8 wt% NaCl equiv.); and (5) a few carbonic inclusions with halite±nahcolite. The diversity of entrapped fluid composition is explained in terms of changes in fluid pressure and temperature which affect a more or less uniform supply of primary low-salinity CO 2–H 2O–NaCl fluid to the shear zone. Geothermobarometric studies indicate that during mineralization temperature ranged between 360 and 240 °C, and fluid pressure between 3,600 and 1,600 bar. The data are interpreted in terms of the cyclic fault-valve mechanism for active shear zones. Deposition of gold and sulfides has been studied on the basis of constraints from the composition of wall-rock chlorite, ore-mineral assemblages, and textural features. Tubular channels, 20 to 100 µm wide and up to 500 µm long that arise from fractures and C-planes in sheared quartz veins are reported for the first time. The channels have pyrrhotite, arsenopyrite, pyrite and gold at their distal ends, with calcite filling up the remaining part. These channels form in response to increases in T and P, by dissolution of quartz grains, guided by dislocations in them. At the PT conditions of interest, gold and sulfide deposition takes place in the shears and fractures of quartz veins from CO 2–H 2O–NaCl ore fluid of low salinity and pH due to changes in phase compositions that occur during the process of shear failure of the enclosing rocks. In the wall rock where pH is buffered, gold deposition takes place from the predominant Au(HS) 2 - species with progressive sulfide deposition and decrease in SS, from 0.01 to 0.001 mol/kg as T falls from 360 to 240 °C.  相似文献   

10.
萤石重晶石方解石共生非金属矿物分析方法研究   总被引:1,自引:0,他引:1  
王峰  倪海燕 《岩矿测试》2013,32(3):449-455
萤石、方解石、重晶石是自然界中普遍共生的非金属矿,具有十分重要的经济价值.目前对于该类共生矿物中不同矿物含量的分离测定,尚未建立较系统、准确的方法.本文通过条件试验,选用10%冰醋酸作为溶剂溶解分离方解石和萤石,硝酸-高氯酸溶解分离萤石和重晶石,制定了一套适用于方解石、萤石、重晶石共生矿物的分离分析方法流程.应用该实验流程对三类矿石组合样品及实际样品进行分析,内外检的测定结果准确可靠;对GBW 07250 ~ GBW 07254五个萤石国家一级标准物质和一个重晶石管理样品进行分析,方法精密度(RSD)<0.4%,证明该方法流程也适用于萤石或重晶石含量较高的样品分析.与国家标准方法GB/T 5195.1-2006(萤石氟化钙含量测定)比较,本流程更加连续简便,可指导方解石、萤石、重晶石共生矿物资源评价、选矿及回收试验,有利于提高该类非金属矿物的综合利用价值.  相似文献   

11.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   

12.
云南毛坪铅锌(银、锗)矿床是川滇黔成矿域滇东北地区以碳酸盐岩为主岩的中-大型铅锌(银)矿床的典型代表。矿体空间分布严格受 NE 向层间断裂带和猫猫山倒转背斜的控制。主要脉石矿物(铁方解石、方解石及白云岩)中的流体包裹体发育,一般较小(3~15μm),主要为纯液相和液相包裹体,常沿矿物结晶面密集成群展布。成矿流体属 Na~ -K~ -Ca~(2 )-CI~- -F~- 型,流体包裹体均一温度为180~218(C,盐度为4.1 wt%~9.5 wt% NaCl,成矿压力为406×10~5~570×10~5Pa。在主要脉石矿物流体包裹体中,Na~ /K~ (1.54~4.53)与 Cl~-/F~-(0.72~156.33)较高,而重晶石流体包裹体中 Na~ /K~ (0.32~8.36)与 Cl~-/F~-(1.06~16.77)较低。成矿流体的(D 为-23‰~-64‰,方铅矿、闪锌矿和黄铁矿中流体包体(~(18)O_(v-SMOW)依次为0.3‰~6.2‰,-9.0‰~3.4‰和-6.8‰~-12.7‰。脉石矿物的(~(13)C_(v-PDB)为-1.1‰~-3.7‰。以上信息更好地揭示了成矿流体是变质水、岩浆水和建造水混合的产物,它们与沉积作用、昆阳群基底的变质作用及岩浆热液作用有关。该矿床本身可能是富含铅、锌、银等成矿流体对流循环沿构造"贯入"而成。该矿床不同于典型的 MVT 型铅锌矿床,是一碳酸盐岩为主岩的铅锌多金属硫化物矿床。  相似文献   

13.
《Applied Geochemistry》1997,12(1):37-54
The Cadjebut MVT mineralization is hosted by carbonate-evaporite units in the Givetian lower dolomite sequence of the Pillara platform, northern Western Australia, and occurs as 2 ore types: (1) An early Zn-rich, stratiform and rhythmically banded ore and its laterally equivalent halo of banded marcasite, barite ± calcite; and (2) a later cross-cutting, breccia-fill, Pb-rich ore. The 2 ore types are exploited through 2 mining lenses; an upper lens 1 and lower lens 2. The orebody is sited N of the normal, basin-side down, Cadjebut Fault. Rhythmically banded marcasite completely envelopes the orebody in both lenses, whereas banded barite occurs N of the lower lens 2 only where the barite is partially to completely replaced by late cloudy calcite + marcasite. Barite replacement by marcasite and cloudy calcite increases northwards. Petrographic and trace element data indicate 3 types of Fe-sulfides: (1) low-Pb Fe-sulfides with Pb contents <5300 ppm; high-Pb Fe-sulfides with Pb contents <30 000 ppm and, extremely high-Pb Fe-sulfides with > 30 000 ppm Pb. Only the ‘colloform’ pyrites exhibit Pb contents above 30 000 ppm, and SEM images show these elevated Pb contents are due to micron-scale galena inclusions. Mineral chemical data from sulfides in the stratiform Fe-sulfide and barite halos indicate that main ore-stage fluids of the rhythmically banded ore event were enriched in Zn, Pb, Cd, As and, to a minor extent Ni and Cu. Late-stage fluids of the rhythmically banded ore event were not saturated with respect to galena, precipitating low-Pb marcasites along the very outer fringes of the orebody, and replacing rhythmically banded barite in lens 2. Only the low-Pb marcasites show various stages of pyrite inversion. Petrographic and trace element mineral chemistry of the 2 stratiform halos are best explained by a model in which main ore stage fluids of the early rhythmically banded ore event emanated from below the Cadjebut orebody along an inferred antithetic reverse fault. The presence of a laterally zoned alteration halo with a pattern of proximal higher Pb and trace element-bearing Fe-sulfides provides a vector towards the ore zone, and has important exploration significance for this style of base-metal mineralization.  相似文献   

14.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

15.
The Dongmozhazhua deposit, the largest Pb–Zn deposit in south Qinghai, China, is stratabound, carbonate‐hosted and associated with epigenetic dolomitization and silicification of Lower–Middle Permian—Upper Triassic limestones in the hanging walls of a Cenozoic thrust fault system. The mineralization is localized in a Cenozoic thrust‐folded belt along the northeastern edge of the Tibetan plateau, which was formed due to the India–Asia plate collision during the early Tertiary. The deposit comprises 16 orebodies with variable thicknesses (1.5–26.3 m) and lengths (160–1820 m). The ores occur as dissemination, vein, and breccia cement. The main sulfide assemblage is sphalerite + galena + pyrite + marcasite ± chalcopyrite ± tetrahedrite, and gangue minerals consist mainly of calcite, dolomite, barite, and quartz. Samples of pre‐ to post‐ore stages calcite yielded δ13C and δ18O values that are, respectively, similar to and lower than those yielded by the host limestones, suggesting that the calcite formed from fluids derived from carbonate dissolution. Fluid inclusions in calcite and sphalerite in the polymetallic sulfidization stage mostly comprise liquid and gas phases at room temperature, with moderate homogenization temperatures (100–140°C) and high salinities (21–28 wt% NaCl eq.). Micro‐thermometric fluid inclusion data point to polysaline brines as ore‐forming fluids. The δD and δ18O values of ore fluids, cation compositions of fluid inclusions, and geological information suggest two main possible fluid sources, namely basinal brines and evaporated seawater. The fluid inclusion data and regional geology suggest that basinal brines derived from Tertiary basins located southeast of the Dongmozhazhua deposit migrated along deep detachment zones of the regional thrust system, leached substantial base metals from country rocks, and finally ascended along thrust faults at Dongmozhazhua. There, the base‐metal‐rich basinal brines mixed with bacterially‐reduced H2S‐bearing fluids derived from evaporated seawater preserved in the Permo–Triassic carbonate strata. The mixing of the two fluids resulted in Pb–Zn mineralization. The Dongmozhazhua Pb–Zn deposit has many characteristics that are similar to MVT Pb–Zn deposits worldwide.  相似文献   

16.
The mineral barite (BaSO4) can precipitate in a variety of oceanic settings: in the water column, on the sea floor and within marine sediments. The geological setting where barite forms ultimately determines the geochemistry of the precipitated mineral and its usefulness for various applications. Specifically, the isotopic and elemental composition of major and trace elements in barite carry information about the solution(s) from which it precipitated. Barite precipitated in the water column (marine or pelagic barite) can be used as a recorder of changes in sea water chemistry through time. Barite formed within sediments or at the sea floor from pore water fluids (diagenetic or cold seeps barite) can aid in understanding fluid flow and sedimentary redox processes, and barite formed in association with hydrothermal activity (hydrothermal barite) provides information about conditions of crust alteration around hydrothermal vents. The accumulation rate of marine barite in oxic‐pelagic sediments can also be used to reconstruct past changes in ocean productivity. Some key areas for future work on the occurrence and origin of barite include: fully characterizing the mechanisms of precipitation of marine barite in the water column; understanding the role and potential significance of bacteria in barite precipitation; quantifying parameters controlling barite preservation in sediments; determining the influence of diagenesis on barite geochemistry; and investigating the utility of additional trace components in barite.  相似文献   

17.
The Maoniuping REE deposit, located about 22 km to the southwest of Mianning, Sichuan Province, is the second largest light REE deposit in China, subsequent to the Bayan Obo Fe-Nb-REE deposit in the Inner Mongolia Autonomous Region. Tectonically, it is located in the transitional zone between the Panxi rift and the Longmenshan-Jinpingshan orogenic zone. It is a carbonatite vein-type deposit hosted in alkaline complex rocks. The bastnaesite-barite, bastnaesite-calcite, and bastnaesite-microcline lodes are the main three types of REE ore lodes. Among these, the first lode is distributed most extensively and its REE mineralization is the strongest. Theδ34Sv-CDT values of the barites in the ore of the deposit vary in a narrow range of +5.0 to +5.1‰in the bastnaesite-calcite lode and +3.3 to +5.9‰in the bastnaesite-barite lode, showing the isotopic characteristics of magma-derived sulfur. Theδ13Cv-PDB values and theδ518OV-SMOW values in the bastnaesite-calcite lode range from -3.9 to -6.9‰and from +7.3 to +9.7‰, respectively, which fall into the range of "primary carbonatites", showing that carbon and oxygen in the ores of the Maoniuping deposit were derived mainly from a deep source. Theδ13Cv-PDB values of fluid inclusions vary from -3.0 to -5.6‰, with -3.0 to -4.0‰in the bastnaesite-calcite lode and -3.0 to -5.6‰in the bastnaesite-barite lode, which show characteristics of mantle-derived carbon. TheδDv-SMOW values of fluid inclusions range from -57 to -88‰, with -63 to -86‰in the bastnaesite-calcite lode and -57 to -88‰in the bastnaesite-barite lode, which show characteristics of mantle-derived hydrogen. Theδ18OH2OV-SMOW values vary from +7.4 to +8.6‰in the bastnaesite calcite lode, and +6.7 to +7.8‰in the bastnaesite-barite lode, almost overlapping the range of +5.5 to +9.5‰for magmatic water. The 4He content, R/Ra ratios are (13.95 to 119.58×10-6 (cm3/g)STP and 0.02 to 0.11, respectively, and 40Ar/36Ar is 313±1 to 437±2. Considering the 4He increase caused by high contents of radioactive elements, a mantle-derived fluid probably exists in the inclusions in the fluorite, calcite and bastnaesite samples. The Maoniuping deposit and its associated carbonatite-alkaline complex were formed in 40.3 to 12.2 Ma according to K-Ar and U-Pb data. All these data suggest that large quantities of mantle fluids were involved in the metallogenic process of the Maoniuping REE deposit through a fault system.  相似文献   

18.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

19.
微山稀土矿位于华北克拉通东南缘的鲁西地块,为与碱性岩相关的伟晶岩型稀土矿床.根据单颗粒云母Rb-Sr定年,其形成于119.5 Ma,属于华北克拉通早白垩世大规模成矿事件的一部分.稀土矿物氟碳铈矿和独居石的激光Nd同位素研究表明,稀土矿的成矿物质与其围岩碱性岩一样,来源于富集地幔.对稀土矿脉中的石英、萤石和重晶石的流体包...  相似文献   

20.
湖南东坡柴山-蛇形坪一带铅锌矿床流体包裹体研究   总被引:2,自引:1,他引:1  
东坡柴山-蛇形坪一带铅锌矿床位于千里山岩体西南侧的远接触带上,由脉状、柱状和席状的铅锌矿体组成,在矿体周围明显发生碳酸盐化和硅化作用。该带矿床中闪锌矿、萤石、石英和方解石内流体包裹体类型主要包括富液相包裹体、富气相包裹体和含子矿物包裹体;其流体包裹体的均一温度范围为140~395℃,在350℃、240~260℃和200~220℃处分别出现峰值,反映该期热液流体在形成脉状、柱状铅锌矿体过程中可能包含了不同的捕获事件,其中方解石内出现的气体包裹体同与其共生的液体包裹体的均一温度相近,两者均一温度范围主要集中在268~395℃,峰值为350℃,液相包裹体w(NaCleq)范围为9%~11%,表明流体发生过气液相分离的沸腾作用;闪锌矿、萤石、石英和方解石中流体包裹体w(NaCleq)范围为0~23%,峰值9%~10%。流体包裹体的均一温度和盐度特征与岩浆热液流体演化到裂隙阶段静水压力条件下的流体相近。闪锌矿中流体包裹体内存在方解石和白云石子矿物,表明铅锌矿的成矿作用发生在富集碳酸盐的热液流体中。千里山花岗岩体晚期释放的流体沿着不同的通道上升,当它冷却到低于400℃,这些地区产生了脆性裂隙,流体沿着裂隙继续上升,并且发生沸腾作用,因此,温度在340~400℃时,w(NaCleq)为7%左右的流体分成了w(NaCleq)约10%的液相流体和w(NaCleq)约0.02%的气相流体,由于温度和压力的迅速降低,成矿物质沿着裂隙和空洞沉淀成矿,形成了东坡矿区的脉状、柱状和席状的铅锌矿体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号