首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents new observations of 97 planetary nebulae in the Large Magellanic Cloud (LMC) obtained using the FLAIR system on the UK 1.2-m Schmidt Telescope. These nebulae are mostly at the fainter end of the known population, and about 75 per cent have not been observed before in spectroscopic mode. Radial velocities have been measured using cross-correlation techniques, and represent an increase of 66 per cent in the sample of LMC planetary nebulae with known radial velocities. The major line ratios are given, and are analysed in conjunction with published data. One-quarter of the faint nebulae are Type I objects with very strong [N II ] and [S II ] lines; most of the other faint nebulae have low density, low excitation and relatively strong [S II ] lines.  相似文献   

2.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

3.
Diffuse gamma-rays in the Galactic Centre region have been studied. We propose that there exists a population of millisecond pulsars in the Galactic Centre, which emit GeV gamma-rays through synchrotron-curvature radiation as predicted by outer gap models. These GeV gamma-rays from unresolved millisecond pulsars probably contribute to the diffuse gamma-ray spectrum detected by EGRET which displays a break at a few GeV. We have used a Monte Carlo method to obtain simulated samples of millisecond pulsars in the Galactic Centre region covered by EGRET  (∼ 15)  according to the different period and magnetic field distributions from observed millisecond pulsars in the Galactic field and globular clusters, and superposed their synchrotron-curvature spectra to derive the total GeV flux. Our simulated results suggest that there probably exist about 6000 unresolved millisecond pulsars in the region of angular resolution of EGRET, the emissions of which could contribute significantly to the observed diffuse gamma-rays in the Galactic Centre.  相似文献   

4.
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation, muon neutrinos are produced through the Δ-resonance in interactions of pulsar-accelerated ions with its thermal radiation field. High-energy gamma-rays should also be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here, we estimate TeV gamma-ray flux at the Earth from a few nearby young pulsars. When compared with the observations, we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect, we obtain the (revised) event rates at the Earth due to a few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma-ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.  相似文献   

5.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

6.
A sample of 1497 carbon stars in the Large Magellanic Cloud (LMC) has been observed in the red part of the spectrum with the 2dF facility on the Anglo-Australian Telescope. Of these, 156 have been identified as J-type (i.e. 13C-rich) carbon stars using a technique which provides a clear distinction between J stars and the normal N-type carbon stars that comprise the bulk of the sample, and yields few borderline cases. A simple two-dimensional classification of the spectra, based on their spectral slopes in different wavelength regions, has been constructed and found to be related to the more conventional c and j indices, modified to suit the spectral regions observed. Most of the J stars form a photometric sequence in the   K − ( J − K )  colour–magnitude diagram, parallel to and 0.6 mag fainter than the N-star sequence. A subset of the J stars (about 13 per cent) are brighter than this J-star sequence; most of these are spectroscopically different from the other J stars. The bright J stars have stronger CN bands than the other J stars and are found strongly concentrated in the central regions of the LMC. Most of the rather few stars in common with Hartwick and Cowley's sample of suspected CH stars are J stars. Overall, the proportion of carbon stars identified as J stars is somewhat lower than has been found in the Galaxy. The Na D lines are weaker in the LMC J stars than in either the Galactic J stars or the LMC N stars, and do not seem to depend on temperature.  相似文献   

7.
We use a new self-consistent model to derive the conversion efficiency from rotation power to γ-ray power for pulsars (εth). Our result indicates that εth∝τ6/7 P 2, where τ and P are the characteristic age and period of the pulsar, which shows that although the efficiency increases with the characteristic age of the pulsar, it also depends on the pulsar period. We test our model results with the survey of high-energy γ-rays from pulsars by EGRET. Our model not only successfully explains the efficiency of the confirmed γ-ray pulsars but also explains why the γ-ray efficiency of millisecond pulsars is so low.  相似文献   

8.
We present a CCD photometric and mass function study of nine young Large Magellanic Cloud star clusters, namely NGC 1767, 1994, 2002, 2003, 2006, SL 538, NGC 2011, 2098 and 2136. BV RI data, reaching down to   V ∼ 21  mag, were collected from the 3.5-m NTT/EFOSC2 in subarcsec seeing conditions. For NGC 1767, 1994, 2002, 2003, 2011 and 2136, broad-band photometric CCD data are presented for the first time. Seven of the nine clusters have ages between 16 and 25 Myr, and the other two have ages of  32 ± 4 Myr  (NGC 2098) and  90 ± 10 Myr  (NGC 2136). For the seven youngest clusters, the age estimates based on a recent model and the integrated spectra are found to be systematically lower (∼10 Myr) than the present estimates. In the mass range  ∼2–12 M  , the mass function slopes for eight out of nine clusters were found to be similar, with the value of γ ranging from  −1.90 ± 0.16  to  −2.28 ± 0.21  . For NGC 1767 the slope is flatter, with  γ=−1.23 ± 0.27  . Mass segregation effects are observed for NGC 2002, 2006, 2136 and 2098. This is consistent with the findings of Kontizas and colleagues for NGC 2098. The presence of mass segregation in these clusters could be an imprint of the star formation process, as their ages are significantly smaller than their dynamical evolution time. The mean mass function slope of  γ=−2.22 ± 0.16  derived for a sample of 25 young (≤100 Myr) dynamically unevolved Large Magellanic Cloud stellar systems provides support for the universality of the initial mass function in the intermediate-mass range  ∼2–12 M  .  相似文献   

9.
We report our initial discovery of 73 new planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) following confirmatory 2dF spectroscopy on the Anglo-Australian Telescope. Preliminary candidate sources come from a 10 per cent sub-area of our new deep, high-resolution Hα map of the central 25 deg2 of the LMC obtained with the UK Schmidt Telescope. The depth of the high-resolution map was extended to   R equiv∼ 22  for  Hα (4.5 × 10−17 erg cm−2 s−1Å−1)  by a process of multi-exposure median co-addition of a dozen 2-h Hα exposures. The resulting map is at least 1-mag deeper than the best wide-field narrow-band LMC images currently available. This depth, combined with our selection technique, has also led to the discovery of extended asymptotic giant branch (AGB) haloes around many new and previously known LMC PNe for the first time. Once complete, our new survey is expected to triple the LMC PN population and have significant implications for the LMC PN luminosity function, kinematics, abundance gradients, chemical evolution and, via study of the AGB haloes, the initial to final mass relation for low- to intermediate-mass stars.  相似文献   

10.
11.
12.
13.
14.
We present an analysis of the spatial distribution of various stellar populations within the Large Magellanic Cloud (LMC). We combine mid-infrared selected young stellar objects, optically selected samples with mean ages between ∼9 and ∼1000 Myr and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC. For the analysis we use Fractured Minimum Spanning Trees, the statistical Q parameter and the two-point correlation function. Restricting our analysis to young massive (OB) stars, we confirm our results obtained for M33, namely that the luminosity function of the groups is well described by a power law with index −2, and that there is no characteristic length-scale of star-forming regions. We find that stars in the LMC are born with a large amount of substructure, consistent with a two-dimensional fractal distribution with dimension     and evolve towards a uniform distribution on a time-scale of ∼175 Myr. This is comparable to the crossing time of the galaxy, and we suggest that stellar structure, regardless of spatial scale, will be eliminated in a crossing time. This may explain the smooth distribution of stars in massive/dense young clusters in the Galaxy, while other, less massive, clusters still display large amounts of structure at similar ages. By comparing the stellar and star cluster distributions and evolving time-scales, we show that infant mortality of clusters (or 'popping clusters') has a negligible influence on the galactic structure. Finally, we quantify the influence of the elongation, differential extinction and contamination of a population on the measured Q value.  相似文献   

15.
16.
We present a modified scenario of gamma-ray emission from pulsars within the framework of polar cap models. Our model incorporates the possible acceleration of electron–positron pairs created in magnetospheres, and their subsequent contribution to the gamma-ray luminosity L γ. It also reproduces the empirical trend in L γ for seven pulsars detected with Compton Gamma-Ray Observatory ( CGRO ) experiments. At the same time it avoids basic difficulties faced by theoretical models when confronted with observational constraints.   We show that the classical and millisecond pulsars form two distinct branches in the L γ— L sd diagram (where L sd is the spin-down luminosity). In particular, we explain why the millisecond pulsar J0437−4715 has not been detected with any of the CGRO instruments despite its very high position in the ranking list of spin-down fluxes (i.e. L sd/ D 2, where D is a distance). The gamma-ray luminosity predicted for this particular object is about one order of magnitude below the upper limit set by EGRET.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号