首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
3.
Cobbles, boulders, and rocks often are used in a bed protection layer near a structure to protect the underlying sand bed against erosion by combined current and waves. The design of a bed protection layer consisting of loose rocks (rubble mound) requires knowledge of the stability and movement (as bed load) of very coarse materials. If some movement (or damage) is acceptable, the rock diameter can be designed to be smaller. This paper addresses the stability and movement of very coarse materials (cobbles, boulders, and rocks) based on the concept of the critical Shields mobility number. It is shown that the bed load transport of large cobbles, boulders, and rocks can be described by the equations of Meyer-Peter and Mueller (MPM) and Cheng. Both are valid for relatively small Shields mobility numbers. New and general equations for the design of a bed protection layer (including some permissible damage) in conditions with a current with or without waves are proposed based on the Shields mobility parameter and the bed load transport equation of Cheng. Laboratory and field data of critical velocities for pebbles, cobbles, boulders, and rocks have been analyzed and compared to the computed results of the proposed equations. Practical applications are given to demonstrate the general applicability of the proposed equations.  相似文献   

4.
A field study of oxygen-enhanced biodegradation was carried out in a sandy iron-rich ground water system contaminated with gasoline hydrocarbons. Prior to the oxygen study, intrinsic microbial biodegradation in the contaminant plume had depleted dissolved oxygen and created anaerobic conditions. An oxygen diffusion system made of silicone polymer tubing was installed in an injection well within an oxygen delivery zone containing coarse highly permeable sand. During the study, this system delivered high dissolved oxygen (DO) levels (39 mg/L) to the ground water within a part of the plume. The ground water was sampled at a series of monitors in the test zone downgradient of the delivery well to determine the effect of oxygen on dissolved BTEX, ground water geochemistry, and microbially mediated biodegradation processes. The DO levels and Eh increased markedly at distances up to 2.3 m (7.5 feet) downgradient. Potential biofouling and iron precipitation effects did not clog the well screens or porous medium. The increased dissolved oxygen enhanced the population of aerobes while the activity of anaerobic sulfate-reducing bacteria and methanogens decreased. Based on concentration changes, the estimated total rate of BTEX biodegradation rose from 872 mg/day before enhancement to 2530 mg/day after 60 days of oxygen delivery. Increased oxygen flux to the test area could account for aerobic biodegradation of 1835 mg/day of the BTEX. The estimated rates of anaerobic biodegradation processes decreased based on the flux of sulfate, iron (II), and methane. Two contaminants in the plume, benzene and ethylbenzene, are not biodegraded as readily as toluene or xylenes under anaerobic conditions. Following oxygen enhancement, however, the benzene and ethylbenzene concentrations decreased about 98%, as did toluene and total xylenes.  相似文献   

5.
We performed quasi‐two‐dimensional flow through laboratory experiments to study the effect of a coarse‐material inclusion, located in the proximity of the water table, on flow and oxygen transfer in the capillary fringe. The experiments investigate different phases of mass transfer from the unsaturated zone to anoxic groundwater under both steady‐state and transient flow conditions, the latter obtained by fluctuating the water table. Monitoring of flow and transport in the different experimental phases was performed by visual inspection of the complex flow field using a dye tracer solution, measurement of oxygen profiles across the capillary fringe, and determination of oxygen fluxes in the effluent of the flow‐through chamber. Our results show significant effects of the coarse‐material inclusion on oxygen transfer during the different phases of the experiments. At steady state, the oxygen flux across the unsaturated/saturated interface was considerably enhanced due to flow focusing in the fully water‐saturated coarse‐material inclusion. During drainage, a zone of higher water saturation formed in the fine material overlying the coarse lens. The entrapped oxygen‐rich aqueous phase contributed to the total amount of oxygen supplied to the system when the water table was raised back to its initial level. In case of imbibition, pronounced air entrapment occurred in the coarse lens, causing oxygen to partition between the aqueous and gaseous phases. The oxygen mass supplied to the anoxic groundwater following the imbibition event was found to be remarkably higher (approximately seven times) in the heterogeneous system compared with a similar experiment performed in a homogeneous porous medium.  相似文献   

6.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains.  相似文献   

7.
Rubble-mound breakwaters are subjected not only to water wave action but also to other types of environmental loading, such as earthquakes. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The purpose of this study is to understand the dynamic response of breakwater materials in dry and water conditions. Hence, an experimental study was carried out for homogeneous breakwater structures subjected to different dynamic loadings with variable frequencies and amplitudes in a shaking tank. A shaking tank with a single degree of freedom was developed. The experiments were performed with rigid bottom conditions. The model scale was 1/50. The cyclic responses of the breakwater made of entirely armor material and another of entirely core material were examined separately, and their behaviors were then compared. The experimental results are also discussed with a numerical study, and the material properties and failure modes were thus defined. It is found that the settlement of the armor and core materials under cyclic loads increased with increasing base acceleration level. The cyclic deformation of the rubble mound breakwater in water was larger than that under dry conditions. The cyclic deformation of the rubble materials resulted in crest lowering and slumping. Dominant mode of the seismic failure was associated with the settlement of the crown of the structure accompanied by densification of the core material.  相似文献   

8.
本文以多孔介质中大尺度传热问题为基础,结合热平衡理论分析与数值计算,探讨了上通流对大陆岩石圈地幔-地壳热结构模式的潜在影响.根据大陆岩石圈中孔隙波传热概念模型的初步理论分析结果,指出了采用理论分析和数值模拟相结合的方法在研究大陆岩石圈地幔-地壳热结构模式时的重要性.理论分析方法可用来确定岩石圈尺度范围内大陆岩石圈的厚度和大陆地壳相关的边界条件,从而为地壳范围内数值模型的建立提供一些重要信息.数值模拟方法可以用来模拟地壳尺度范围内地壳的详细结构和复杂几何形状.如果地壳内的热分布是所考虑的主要因素,采用具有地壳尺度的合理数值模型可以有效减少计算机工作量.利用理论分析方法求出的岩石圈尺度范围内大陆岩石圈厚度与地幔传导热流之间关系的理论解,不仅可以用来验证模拟大陆岩石圈内传热问题所采用的数值方法, 而且可以用来初步研究大陆岩石圈内热分布的基本规律,为研究岩石圈地幔热事件中大陆岩石圈热减薄过程提供相应的边界条件.本文从理论分析的观点初步探讨了中国大陆不同构造背景下大陆岩石圈的热结构模式,其结果与从地球物理和地质资料中获得的大陆岩石圈热结构模式十分吻合.研究结果表明由大陆岩石圈中孔隙波传播所导致的上通流是影响大陆岩石圈地幔-地壳热结构模式及大陆岩石圈地幔与地壳之间物质和能量交换的可能机制之一.  相似文献   

9.
Study of hydraulic structures such as groins and bandal-like structures can provide valuable information on their influences on morphological processes in natural rivers.These structures usually used for bank protection and formation of deep navigation channel can locally create complex flow patterns,reduce flow velocities and also increase the flood levels.Most of the previous studies are focused on structures like groins under non-submerged flow condition.However,the recent demand of nature friendly low cost and sustainable methods for river bank protection and channel formation leads to the necessity of study different type of structures like bandal-like structures.In this context, this study investigates the flow characteristics and sediment transport process influenced by bandal-like structures through laboratory experiments.The experiments were carried out under live-bed scour condition with sediment supplied from the inlet for two submergence(non-submerged and submerged)conditions.The experimental measurements contribute to better understand the mechanism of deposition/erosion process around different type of hydraulic structures.The performance of bandal-like structures considering the erosion around the structures,the deposition near the bank and the formation of deep main channel show promising results compared with conventional structures such as groins(impermeable and permeable ones).  相似文献   

10.
Seismic safety of structures depends on the structure's ability to absorb the seismic energy that is transmitted from ground to structure. One parameter that can be used to characterize seismic energy is the energy flux. Energy flux is defined as the amount of energy transmitted per unit time through a cross-section of a medium, and is equal to kinetic energy multiplied by the propagation velocity of seismic waves. The peak or the integral of energy flux can be used to characterize ground motions. By definition, energy flux automatically accounts for site amplification. Energy flux in a structure can be studied by formulating the problem as a wave propagation problem. For buildings founded on layered soil media and subjected to vertically incident plane shear waves, energy flux equations are derived by modeling the building as an extension of the layered soil medium, and considering each story as another layer. The propagation of energy flux in the layers is described in terms of the upgoing and downgoing energy flux in each layer, and the energy reflection and transmission coefficients at each interface. The formulation results in a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. The upgoing and downgoing energy flux in the layers allows calculation of the energy demand and energy dissipation in each layer. The methodology is applicable to linear, as well as nonlinear structures.  相似文献   

11.
Temperature inversions at shallow to moderate depths have been observed commonly in boreholes drilled in geothermal areas. The inversions result from thermal disequilibria generated by steam and/or hydrothermal fluids invading shallow horizontal, or sub-horizontal fractures, or permeable horizons, from a deep vertical, or sub-vertical feeder-fracture.Subsurface distribution of temperatures in Momotombo geothermal area of Nicaragua, Central America, indicates that the anomaly is generated by steam and water, convecting in a narrow feeder-fracture-zone located at the western edge of the field. The north-trending zone of the feeder-fracture is bound on the west by the area of massive, impermeable andesitic rocks, and is capped by an impermeable, approximately 300 m. thick silica-cap, which seals if from the ground surface. The thermal fluids penetrate a system of horizontal, or sub-horizontal fractures, extending east of the feeder-fracture beneath the silica cap. The flow of thermal fluids eastward through the system of the horizontal, or sub-horizontal fractures is generating a plume-like geothermal anomaly, which is expressed by the temperature inversion zone pervasive in the boreholes to the east of the feeder-fracture.A time-dependant model for a semi-infinite half-space (z > 0) in contact with a hot, well stirred, isotropic fluid flowing through an aquifer overlain by a finite space of constant thickness is solved for the data collected from the Momotombo geothermal boreholes. Curve fitting between the simulated and observed temperature/depth profiles suggests that the thermo-tectonic events which caused the present-day Momotombo hydrothermal system occurred approximately 5,500 years ago, following development of vertical, or subvertical fractures along a N5°E trending faultline. Hot fluids emerging from these fractures move eastward through a system of horizontal, or sub-horizontal fractures, with a velocity of 11 to 20 m/yr.  相似文献   

12.
This article deals with the quantification of saltwater upconing below horizontal wells in freshwater lenses using analytical solutions as a computationally fast alternative to numerical simulations. Comparisons between analytical calculations and numerical simulations are presented regarding three aspects: (1) cyclic pumping; (2) dispersion; and (3) finite horizontal wells in a finite domain (a freshwater lens). Various hydrogeological conditions and pumping regimes within a dry half year are considered. The results show that the influence of elastic and phreatic storage (which are not taken into account in the analytical solutions) on the upconing of the interface is minimal. Furthermore, the analytical calculations based on the interface approach compare well with numerical simulations as long as the dimensionless interface upconing is below 1/3, which is in line with previous studies on steady pumping. Superimposing an analytical solution for mixing by dispersion below the well over an analytical solution based on the interface approach is appropriate in case the vertical flow velocity around the interface is nearly constant but should not be used for estimating the salinity of the pumped groundwater. The analytical calculations of interface upconing below a finite horizontal well compare well with the numerical simulations in case the distance between the horizontal well and the initial interface does not vary significantly along the well and in case the natural fluctuation of the freshwater lens is small. In order to maintain a low level of salinity in the well during a dry half year, the dimensionless analytically calculated interface upconing should stay below 0.25.  相似文献   

13.
Abstract

Cowling investigated the effect of an imposed magnetic field on convection in order to explain the origin of sunspots. After summarizing the classical linear theory of Boussinesq magnetoconvection, this review proceeds to more recent nonlinear results. Weakly nonlinear theory is used to establish the relevant bifurcation structure, which involves steady, oscillatory and chaotic solutions. Behaviour found in numerical experiments can then be related to these analytical results. Thereafter, attention is focused on the astrophysically relevant problem of fully compressible magnetoconvection. Steady two-dimensional nonlinear solutions show two important effects: stratification introduces an asymmetry between rising and falling fluid, while compressibility leads to evacuated magnetic flux sheets. Time-dependent behaviour includes transitions between standing waves and travelling waves, as well as changes in horizontal scale, leading to the development of more complicated spatial structures. Work on three-dimensional models, which is now in progress, will lead to a better understanding of the structure of a sunspot.  相似文献   

14.
This study investigates the propagation of borehole Stoneley waves across permeable structures. By modelling the structure as a zone intersecting the borehole, a simple 1D theory is formulated to treat the interaction of the Stoneley wave with the structure. This is possible because the Stoneley wave is a guided wave, with no geometric spreading as it propagates along the borehole. The interaction occurs because the zone and the surrounding formation possess different Stoneley wavenumbers. Given appropriate representations of the wavenum-ber, the theory can be applied to treat a variety of structures, including a fluid-filled fracture. Of special interest are the cases of permeable porous zones and fracture zones. The results show that, while Stoneley wave reflections are generated, strong Stoneley wave attenuation is produced across a very permeable zone. This result is particularly important in explaining the observed strong Stoneley wave attenuation at major fractures where it has been difficult to explain the attenuation in terms of the single planar fracture theory. In addition, by using a simple and sufficiently accurate theory to model the effects of the permeable zone, a fast and efficient method is developed to characterize the fluid transport properties of a permeable fracture zone.  相似文献   

15.
Currently, one of the most popular methods of containing contaminated ground water is through use of subsurface impermeable barriers. These barriers can take one of three forms: slurry walls, grout curtains, or steel sheet piles. Successful operation of these barrier systems is dependent upon three basic criteria. First, the barrier must be truly impermeable and remain so over time even upon exposure to the contaminated ground water. Second, there must exist an underlying impermeable formation, at a reasonable depth, to which the barrier can be connected. Third, an adequate connection between the barrier and the underlying formation must be assured. This paper presents the results of the analysis of the movement of contaminated ground water under or through an imperfect barrier. The first phase of the analysis consists of the development of an analytical solution for the flow of ground water under a barrier and a simple numerical integration technique for developing concentration breakthrough curves. This simple solution algorithm was applied to the cases of variable recharge rates and lengths, variable depths of penetration of the barrier, and anisotropic soils. The second phase of the analysis involves applying a numerical solute transport model to analyze the performance of a barrier with and without the effects of hydrodynamic dispersion, and in the presence of a layered soil, and finally the performance of a fully penetrating but partially permeable barrier.  相似文献   

16.
重力波在中层大气温度波导中的传播模式研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文给出了重力波在中层大气温度波导中的导制传播模型,并在此模型的基础上详细讨论了重力波部分导制传播下的对称模式与非对称模式,导出了不同模式下相应的特征函数和色散方程,进一步用离散的方法对两类色散方程进行了求解;同时还利用二维全隐欧拉格式(FICE)对重力波在温度波导中的传播进行了模拟,模拟的结果也成功地展现了对称与非对称两种传播模式.研究表明,下边界的扰动能量在向上传播进入波导区域后被俘获,形成导制传播.不同周期的初始扰动,在波导内均会形成对称与非对称形式两种模式的导制传播,由于两者的行进速度不一致,最终会引起两种不同模式的分离.数值模拟中重力波的水平行进速度与线性模型预测值非常接近.波导中不同模式下重力波的水平波长与初始扰动的水平波长非常一致,然而波导区域内重力波的频率与初始扰动的频率无关,频率不同的初始扰动会激发出相同频率的重力波对称与非对称导制传播模式.这表明在确定的温度波导中,水平波数才是决定重力波传播特性的决定因素.进一步的分析显示,初始扰动的水平波数-频率分布越接近完全导制传播的色散关系时,温度波导中更易于生成以该种模式部分导制传播的重力波.  相似文献   

17.
An exact analysis for two-dimensional dynamic interaction of monochromatic progressive plane compressional and shear seismic waves with a permeable circular tunnel lining of circumferentially varying wall thickness buried in a boundless porous elastic fluid-saturated formation is presented. The novel features of Biot dynamic theory of poroelasticity in conjunction with the translational addition theorems for cylindrical wave functions, along with the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in form of infinite series. The analytical results are illustrated with numerical examples in which an air-filled and water-saturated permeable tunnel lining of variable wall thickness, embedded within water-saturated surrounding formations of distinct frame properties (soft, stiff, and stiff viscoelastic soil), is insonified by fast compressional or shear waves at selected angles of incidence. The effects of liner eccentricity, interface permeability, formation material type, incident wave frequency, and angle of incidence on the hoop stress amplitude are evaluated and discussed for representative values of the parameters characterizing the system. Limiting cases are considered and good agreements with the solutions available in the literature are obtained.  相似文献   

18.
Oxygen transfer in the capillary fringe (CF) is of primary importance for a wide variety of biogeochemical processes occurring in shallow groundwater systems. In case of a fluctuating groundwater table two distinct mechanisms of oxygen transfer within the capillary zone can be identified: vertical predominantly diffusive mass flux of oxygen, and mass transfer between entrapped gas and groundwater. In this study, we perform a systematic experimental sensitivity analysis in order to assess the influence of different parameters on oxygen transfer from entrapped air within the CF to underlying anoxic groundwater. We carry out quasi two‐dimensional flow‐through experiments focusing on the transient phase following imbibition to investigate the influence of the horizontal flow velocity, the average grain diameter of the porous medium, as well as the magnitude and the speed of the water table rise. We present a numerical flow and transport model that quantitatively represents the main mechanisms governing oxygen transfer. Assuming local equilibrium between the aqueous and the gaseous phase, the partitioning process from entrapped air can be satisfactorily simulated. The different experiments are monitored by measuring vertical oxygen concentration profiles at high spatial resolution with a noninvasive optode technique as well as by determining oxygen fluxes at the outlet of the flow‐through chamber. The results show that all parameters investigated have a significant effect and determine different amounts of oxygen transferred to the oxygen‐depleted groundwater. Particularly relevant are the magnitude of the water table rise and the grain size of the porous medium.  相似文献   

19.
The passive flux meter (PFM) is a permeable down-hole device designed to measure the magnitudes of horizontal groundwater specific discharge and contaminant mass flux in porous media. By means of a geometrical analysis of resident tracer transport inside a PFM, this paper introduces two new PFM designs capable of measuring both the direction and magnitude of horizontal water and contaminant fluxes. One design relies on the detection of a single resident tracer over multiple domains within the PFM cross section to determine the magnitude and direction of water flux. The second PFM configuration uses the detected loss of multiple resident tracers in different sectors of the PFM cross section to generate the same characterization of water flux. Both designs rely on the assumption of linear, instantaneous and reversible tracer sorption.  相似文献   

20.
Diffusive flux is traditionally treated as the dominant mechanism of gas transport in unsaturated zones under natural conditions, and advective flux is usually neglected. However, some researchers have found that pressure-driven and density-driven advective flux may also be significant under certain conditions. This article compares the diffusive, pressure-driven and density-driven advective fluxes of gas phase volatile organic compound (VOCs) in unsaturated zones under various natural conditions. The presence of a less or more permeable layer at ground surface in a layered unsaturated zone is investigated for its impact on the net contribution of advective and diffusive fluxes. Results show although the transient advective flux can be greater than the diffusive flux, under most of the field conditions the net contribution of the advective flux is one to three orders of magnitude less than the diffusive flux, and the influence of the density-driven flux is undetectable. The advective flux contributes comparably with the diffusive flux only when the gas-filled porosity is less than 0.05. The presence of a less permeable layer at ground surface slightly increases the total flux in the underlying layer, while the presence of a more permeable layer at ground surface significantly increases the total flux in it. When the magnitude of water table fluctuation is less than 1 cm, and the period is greater than 0.5 day, the fluctuation of the water table can be simulated by fixing the water table position and setting a fluctuating moving velocity at the water table.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号