首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Northern Radar's Cape Race Ground Wave Radar (GWR) system became operational in the fall of 1990. The radar facility has the potential to provide surveillance of over 160000 square kilometres of the Grand Banks off Newfoundland, from a coastal station. GWR is a multipurpose sensor capable of detecting ships, monitoring icebergs and sea-ice, and measuring surface currents and sea state. The radar system employs a frequency modulated interrupted continuous wave (FMICW) as the transmit waveform. This waveform uses a pulse compression technique that combines good range resolution and high maximum range with a relatively high duty cycle. In this paper, we describe the implementation of the FMICW waveform in a practical real time radar system. We also show some examples of vessel, iceberg, acid aircraft detection and tracking using the Cape Race facility. These examples demonstrate that the Cape Race GWR may be used as an effective tool to assist in the management, surveillance, and enforcement of Canadian interests in the Exclusive Economic Zone  相似文献   

2.
基于相参X-波段海洋雷达的海表轮廓测量研究   总被引:4,自引:2,他引:2  
X-波段海洋雷达测量所得海面散射单元的多普勒信息与散射单元的雷达视向速度密切相关。首先,基于符号多普勒估计方法,对X-波段雷达海面回波的多普勒频移信息进行了估计;在此基础上,应用各分辨单元回波的多普勒频移信息,建立了海浪表面轮廓的反演算法。该算法中,同时考虑了雷达入射角、方位角和雷达空间分辨率等因素对反演结果的影响。通过将反演结果与浮标测量数据相比较,发现雷达空间分辨率起到了类似低通滤波的作用,该作用对短重力波谱影响显著。同时,还应用加拿大麦克马斯特大学的IPIX雷达数据对海表轮廓进行了反演,并将反演所得有效波高、海浪周期与现场测量数据进行了比较,反演结果与现场测量结果吻合较好。  相似文献   

3.
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging. The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM) signal and the downward LFM signal. Owing to the Doppler frequency shift from the sea surface, a range offset, which is proportional to the radial velocity of the sea surface, occurs between the upward and downward LFM signals. By using the least-squares linear fitting method in the transformed domain, the range offset can be measured and the current velocity can be retrieved. Finally, we verify the accuracy of current measurement with simulation results.  相似文献   

4.
船只目标SAR、HFSWR和AIS多手段融合探测的点迹关联分析   总被引:3,自引:1,他引:2  
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.  相似文献   

5.
根据海面微波散射的多尺度模型以及波流相互作用理论,对一维弱流场调制下的海面微波散射截面进行了数值模拟。结果表明,利用数值方法直接求解波作用量方程获得的海浪调制谱并结合多尺度模型可以较好地模拟弱流场引起的雷达散射截面的变化。内波等海洋现象调制了海浪谱,使得雷达散射截面反映出这些海洋特征,整个调制过程的模拟对于分析这些海洋现象并更好地利用其雷达数据具有重要意义。  相似文献   

6.
The Communications Research Laboratory (CRL) has been developing high-frequency ocean surface radars (HFOSRs). The CRL dual-site HFOSR system can clarify the distribution of surface currents with a nominal range of 50 km. This paper presents a theoretical and experimental analysis of the measurement error of the current vector obtained by the CRL HFOSR system, using a comparison of instantaneous current vectors acquired by the HFOSR system and current meters moored at a depth of 2 m, taking account of the vertical current shear. The theoretical analysis shows that the probability distribution of the measurement error of the current vector forms concentric ellipses at a spatial scale that depends on the RMS measurement error of radial current velocity and with an aspect ratio that depends only on the azimuthal difference of the radar beams. When the azimuthal difference is a right angle, the measurement error of the current vector is at a minimum. A comparison between instantaneous current vectors measured by the CRL HFOSR system and moored current meters shows that the distribution of the difference vector between the radar current and the meter current agrees well with the theoretical measurement error of the current vector and that the RMS of difference vector length is about 10 cm s–1 while the azimuthal difference between two radar beams is between 45 and 135 degrees. The accuracy of current measurement by the dual-site HFOSR system is therefore considered to be less than 10 cm s–1 in this range of azimuthal difference. The theoretical analysis will be applicable for a wider range of the azimuthal difference of the radar beams.  相似文献   

7.
HF radar data quality requirements for wave measurement   总被引:1,自引:0,他引:1  
HF radar wave measurements are presented focussing on theoretical limitations, and thus radar operating parameters, and quality control requirements to ensure robust measurements across a range of sea states. Data from three radar deployments, off the west coast of Norway, Celtic Sea and Liverpool Bay using two different radar systems, WERA and Pisces, and different radio frequency ranges, are used to demonstrate the wave measurement capability of HF radar and to illustrate the points made. Aspects of the measurements that require further improvements are identified. These include modifications to the underlying theory particularly in high sea states, identification and removal of ships and interference from the radar signals before wave processing and/or intelligent partitioning to remove these from the wave spectrum. The need to match the radio frequency to the expected wave peak frequency and waveheight range, with lower radio frequencies performing better at higher waveheights and lower peak frequencies and vice versa, is demonstrated. For operations across a wide range of oceanographic conditions a radar able to operate at more than one frequency is recommended for robust wave measurement. Careful quality control is needed to ensure accurate wave measurements.  相似文献   

8.
Algorithm for HF radar vector current measurements   总被引:1,自引:0,他引:1  
A new algorithm is proposed, called the stream function method (SFM) for producing vector current maps from radial data measured by dual-site high frequency surface wave radar (HFSWR). In SFM, a scalar stream function is constructed under some oceanographic assumptions. The function describes the two-dimensional (2-D) ocean surface water motion and is used to obtain the distribution of vector currents. The performance of SFM is evaluated using simulated radial data, which demonstrates that SFM has advantages over typical vectorial combination methods (VCM) both in error acceptance and robustness, and excels another method based on least-squares fitting (LSF) in recovering the complicated current models. Furthermore, SFM is capable of providing the total currents based on radials from single-site radar. We also test the assumptions of horizontal non-divergence in the simulation. The new algorithm is applied to the field experiment data of Wuhan University’s ocean state measuring and analyzing radar (OSMAR), collected in the coastal East China Sea during April 11–17, 2004. Quantitative comparisons are given between radar results by three current algorithms and in-situ current meter measurements. Preliminary analysis of the vertical current shear is given based on the current meter measurements.  相似文献   

9.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

10.
2015年4月7-30日,在浙江省舟山近海海域开展了“嵊山-朱家尖”小型阵列变频高频地波雷达系统的海上比测试验,通过雷达观测数据与定点ADCP海流资料的比对检验了地波雷达表层流探测性能。径向流比对结果显示,测点与雷达法向夹角越小,距离雷达距离越近,径向流比测结果越好,雷达探测的结果越可靠。嵊山站径向流与ADCP观测结果的各站总体平均误差为7.98 cm/s,平均均方根误差为15.34 cm/s,平均相关系数为0.89,朱家尖站径向流与ADCP观测结果的各站总体平均误差为6.24 cm/s,平均均方根误差为12.36 cm/s,平均相关系数为0.81。根据矢量流比对结果显示,矢量流速与ADCP观测结果的各站总体平均误差为4.82 cm/s,平均均方根误差为15.03 cm/s,平均相关系数为0.44。设置在嵊山、朱家尖两个雷达站双站探测的核心区域(两个雷达站连线的中垂线上,并且与两个雷达站构成一个近似直角三角形)的站点比测结果更加理想,当流速大于0.25 m/s时,对于核心区域平均后的流向均方根误差为24.9°。  相似文献   

11.
OSMAR高频地波雷达福建示范系统径向流   总被引:1,自引:0,他引:1  
朱大勇  邵浩  李炎  李立 《台湾海峡》2007,26(1):7-16
OSNAR高频地波雷达是863计划海洋技术领域的成果,其福建示范系统的两个远端站分别设置在福建省东山县和龙海市境内,2005年6月开始试运行.本文对2005年6、7月份试运行期间雷达远端站给出的遥感径向流数据质量进行了统计分析和初步的海洋学验证.分析结果显示,雷达返回径向流速质量随观测距离增加呈下降趋势,并有明显的日夜差异,日间质量优于夜间.初步验证表明,经质量控制处理后所提取的径向流鸩分潮的振幅和相位的空间分布具有与以往研究结果一致的特征.雷达系统所返回的径向流数据在经过适当的质量控制处理后可以有效地反映覆盖海区表层海流及其时空变化.  相似文献   

12.
Recent experimental and theoretical findings raise interesting questions about the applicability of the normal gravity-wave dispersion relation at wave frequencies that exceed the spectral peak frequency. The use of the dispersion relation in analysis of HF radar Doppler sea echo is examined in this paper. Drawing on the results of perturbation theory for wave-wave nonlinear interactions, we show that this relation, so essential to echo interpretation in terms of current and wave information, can be employed with no degradation in accuracy for current measurement when the dominant wave frequency is considerably less (by as much as 10) than the radar Bragg resonance frequency. This finding is supported by comparisons of currents measured by HF radar with "surface truth;" the first-order echo must only be identifiable in order to be used accurately. Wave-height directional spectral information can be extracted from the second-order echo at a given radar frequency up to the point (in wave height) where the perturbation solution employed in the inversion process fails; then a lower radar frequency must be used. On the other hand, most conventional wave measuring instruments should not use the dispersion relation for interpretation of data well beyond the spectral peak, because they do not observe wave height as a function of both space and time independently, as does HF radar.  相似文献   

13.
X-波段船用雷达观测海洋动力环境要素仿真研究   总被引:3,自引:0,他引:3  
崔利民  何宜军 《海洋科学》2009,33(11):73-77
为了评估X-波段船载雷达观测海浪和海流参数的能力.基于随机海浪理论和雷达几何成像原理模拟了不同调制影响的X-波段船用雷达图像序列,介绍了估算海浪参数和海流参数的算法,对影响雷达观测海流和海浪有关因素进行了分析.同时在雷达图像中加入了随机高斯白噪声,并通过数值方法验证了雷达图像的信噪比开方和有效波高之间的线性关系.数值模拟结果说明X-波段船用雷达能够有效地估算海浪和海流参数,且带有不同噪声水平的雷达系统应具有不同的定标系数.  相似文献   

14.
OSMAR-S系列便携式高频地波雷达系统采用单极子/交叉环紧凑型天线阵,通过单站雷达即可实现有效探测距离约10km内海浪和海面风的单点观测。为了更好地了解OSMAR-S100雷达系统海浪和海面风的综合探测性能,于2013年1月29日至3月7日在台湾海峡西南部海域进行了雷达与浮标观测的对比试验,得到了有效波高、有效波周期、平均风速和平均风向数据。对比结果表明,OSMAR-S100便携式高频地波雷达可有效观测距雷达10km以内有效波高0.5m以上的海浪平均状况和平均风速5m/s以上的海面风,雷达反演有效波高和有效波周期的均方根误差分别为0.60m和1.60s,反演平均风速和平均风向的均方根误差为1.83m/s和16.7°。在未经区域化标定的情况下,此结果说明了该型雷达产品已初步具备了海浪和海面风的业务化观测水平。  相似文献   

15.
Ocean currents are a key element in ocean processes and in meteorology, affecting material transport and modulating climate change patterns. The Doppler frequency shift information of the synthetic aperture radar (SAR) echo signal can reflect the dynamic characteristics of the sea surface, and has become an essential sea surface dynamic remote sensing parameter. Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current. However, the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking. In this study, we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current. Global ocean multi observation (MOB) products and global surface Lagrangian drifter (GLD) data are used to validate the Kuroshio flow retrieved from the SAR data. Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s. The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution, with the 90% confidence interval concentrated between –0.1 m/s and 0.1 m/s. Comparative analysis of SAR ocean current and GLD products, the correlation coefficient is 0.803, which shows to be significant at a confidence level of 99%. The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current, and has the capability to monitor current velocity over a wide range of values.  相似文献   

16.
For settlement of the well-known problem of contemporary radar imaging models,i.e.,the pmblem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal watels at at high radar frequency bands(X-band and C-band),the impact of the ocean surface mixed layer turbulence and the significance of strat-ified oceanic model on SAR remote sensing of internal solitary waves are proposed.In the north of the South China Sea by utilizing seme observed data of background field the nonlinearity coefficient,the dispersion coefficient,the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately.Through simulations of internal tide transfor-mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of intereal wave field are obtained.The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m,but the maximum current speeds take place at depth 20 m in this area of the sea(about 20°30'N,114°E)in August.It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation.The obtained results provide the possibility for the simulation of SAR signatures of inter-nal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

17.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

18.
The berm recession of a reshaping berm breakwater has a very important role for the stability of this kind of structure. Based on a 2D experimental modeling method in a wave flume, the recession of the berm due to sea state and structural parameters has been studied. Irregular waves with a JONSWAP spectrum were used. A total of 215 tests have been performed to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession. In this paper, first a new dimensionless parameter is introduced to evaluate the combined effect of wave height and wave period on berm recession using results of the experimental work. Then, a formula that includes some sea state and structural parameters is derived using the new dimensionless parameter for estimating the berm recession. A comparison is made between the estimated berm recessions by this new formula and formulae given by other researchers to show the preference of using the new dimensionless parameter. The comparison shows that the recession estimated by the new formula has not only a better correlation with the present experimental data, but also has an improved correlation with other experimental results within the range of parameters tested. Outside the range of parameters tested the Lykke Andersen (2006) formula performed best.  相似文献   

19.
For settlement of the well-known problem of contemporary radar imaging models, i. e. , the problem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal waters at high radar frequency bands ( X-band and C-band), the impact of the ocean surface mixed layer turbulence and the significance of strat- ified oceanic model on SAR remote sensing of internal solitary waves are proposed. In the north of the South China Sea by utilizing some observed data of background field the nonlinearity coefficient, the dispersion coefficient, the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately. Through simulations of internal tide transfor- mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of internal wave field are obtained. The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m, but the maximum current speeds take place at depth 20 m in this area of the sea (about 20°30'N, 114°E) in August. It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation. The obtained results provide the possibility for the simulation of SAR signatures of internal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

20.
中等海况下,星载合成孔径雷达(Synthetic Aperture Radar,SAR)已经广泛应用于海洋动力环境要素的监测(风场、波浪、流场)。近年来,SAR高海况遥感,尤其是探测台风海面风场、巨浪、流场已经成为国内外研究热点,并突破了一些关键技术。利用SAR多极化成像模式对海观测和新发展的地球物理模式函数,可以提取高海况下的海面风速、风向、有效波高、流速和流向等海洋表面关键物理参数。这些环境要素可以用于海洋灾害监测预警;为海洋和大气数值模式提供准确的初始场和同化源,改进模式预报精度;为研究全球气候变化提供有力的观测依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号