首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Methods of detecting probable cycles in the flaring activity of flare stars and determining the cycle durations are examined. A new method of detecting a cycle of flaring activity and determining its duration is proposed assuming periodic flaring activity. This method is applied to two stars from the list of flare stars in the Pleiades cluster, Ton91 and Ton377. Variable flaring activity is found in both stars and the periods are estimated to be P=15.2 and 17.7 years for Ton91 and Ton377, respectively.  相似文献   

2.
The now-closed Clark Radio Observatory was used in 1984 and 1985 to search for flaring emission from a number of dMe flare stars in the 30.9 to 110.6 MHz frequency range. No emission was found to greatly exceed detection limits which range from about 1 Jy for 1 hr averaging, to about 50 Jy for 1 s averaging, even though flares were often seen to tens of mJy at 20 cm using the VLA for those times when VLA-CLRO observations were coordinated. There are marginal detections of flaring from AD Leo over two periods on December 15, 1985 which mark the beginning and the end of along-lasting, narrow-band flare at 1415 MHz.  相似文献   

3.
Simultaneous X-ray and extreme ultraviolet (EUV) ( ROSAT XRT and WFC All-Sky Survey) observations of the highly active dMe flare stars YY Gem and AU Mic show that the two stars displayed an unusual type of flaring behaviour. We detect several X-ray and EUV flares superimposed on an enhanced and smoothly varying quiescent background. The two large impulsive-type X-ray flares on YY Gem reach peak X-ray luminosities of     and we estimate that they had similar integrated luminosities (∼6–8×1033 erg). AU Mic also produced several X-ray and EUV flares, with one very impulsive flare producing a 10-fold increase in XRT count rate. This flare was even larger than the YY Gem flares (peak L X of     and integrated L X of    
The     ratio for both stars is at the 'saturation' limit found in rapidly rotating dwarfs and the most active RS CVn stars. We suggest that the gradually varying components are the result of a period of continuous, unresolved flaring activity. Alternatively, they may be the result of the emergence and subsequent decay of a new magnetic active region on the stellar surface of these stars.  相似文献   

4.
This is an analysis of the dependence of the flare activity of the well known flare star UV Ceti on the linear distance between the components of this binary system. It is shown that its flaring activity clearly depends on the mutual distance of the components, while this kind of variability is not seen in isolated flare stars.  相似文献   

5.
We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s?1. The strongest flare was observed with the ratio ~13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ~100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.  相似文献   

6.
Observations of regular and irregular polarimetric variability in late-type stars are reviewed, and the related physical and geometrical effects are discussed. There are indications that the irregular part of the variability could be caused by transient events, possibly associated with flares. Polarimetric observations during flares are reviewed, and preliminary results of new observations of a well-known flare star, YY Geminorum, are presented. The results show that the small flare in YY Gem did not cause any significant variations in linear polarization, while the binary eclipse evidently causes an enhancement in the polarization. The reasons for the difficulties in stellar flare polarimetry are discussed. Finally, future prospects for the observations of flaring stars and for the utilization of linear polarimetry as a complementary method to other techniques of surface imaging of stellar activity and flares are presented.  相似文献   

7.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

8.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

9.
Designing a statistical solar flare forecasting technique can benefit greatly from knowledge of the flare frequency of occurrence with respect to sunspot groups. This study analyzed sunspot groups and Hα and X-ray flares reported for the period 1997 – 2007. Annual catalogs were constructed, listing the days that numbered sunspot groups were observed (designated sunspot group-days, SSG-Ds) and for each day a record for each associated Hα flare of importance category one or greater and normal or bright brightness and for each X-ray flare of intensity C 5 or higher. The catalogs were then analyzed to produce frequency distributions of SSG-Ds by year, sunspot group class, likelihood of producing at least one flare overall and by sunspot group class, and frequency of occurrence of numbers of flares per day and flare intensity category. Only 3% of SSG-Ds produced a substantial Hα flare and 7% had a significant X-ray flare. We found that mature, complex sunspot groups were more likely than simple sunspot groups to produce a flare, but the latter were more prevalent than the former. More than half of the SSG-Ds with flares had a maximum intensity flare greater than the lowest category (C-class of intensity five and higher). The fact that certain sunspot group classes had flaring probabilities significantly higher than the combined probabilities of the intensity categories when all SSG-Ds were considered suggest that it might be best to first predict the flaring probability. For sunspot groups found likely to flare, a separate diagnosis of maximum flare intensity category appears feasible.  相似文献   

10.
The possible variation of the flare frequency of flare stars in the Orion association is considered. It is shown that of the 23 chosen stars, each having exhibited four or more flares, a change in flare frequency at the 0.1 significance level can be suspected for 13.  相似文献   

11.
The results from a flare star investigation in the open cluster Alpha Persei are presented. Photographic flare star monitoring and CCD photometry of the discovered 4 new flare stars are made. The flare star activity phenomenon is restricted to the classical flare stars (UV Ceti type) as classified in the GCVS. The V/V‐I diagramme of the members of the cluster with the locations of the considered flare stars is given. Most of the flare stars are probable cluster members. The flare frequency determined from the Rozhen flare star monitoring is very low–one flare event occurs for 38.5 hours effective observing time. Comparison with the flare activity of the Pleiades is made because of the small difference in the age and distance of the clusters.  相似文献   

12.
New estimates are proposed for the number of flare stars. They are compared with Ambartsumian’s well-known estimate. Using the new estimates, it is found that flare stars of the same luminosity in the Orion association have the same average flare frequency. Translated from Astrofizika, Vol. 41, No. 1, pp. 73–80, January-March. 1998.  相似文献   

13.
A. A. Akopian 《Astrophysics》2001,44(1):106-112
The possible variation of the flare frequencies of flare stars in the Pleiades cluster is considered. It is shown that of the 75 chosen stars that each exhibit five or more flares, 33 can be suspected of variation of flare frequency at the 0.1 significance level.  相似文献   

14.
Craig  I.J.D.  Wheatland  M.S. 《Solar physics》2002,211(1-2):275-287
The ability of magnetic reconnection solutions to explain statistical flare data is discussed. It is assumed that flares occur at well-defined, isolated sites within an active region, determined by the null points and separators of the coronal magnetic field (Craig, 2001). Statistical flare observations then derive from a multiplicity of independent sites, flaring in parallel, that produce events of widely varying output (Wheatland, 2002). Given that the `separator length' at an individual site controls the event frequency and the mean energy release, it is shown that the observed frequency-energy spectrum N(E)can be inverted to yield a source function that relates directly to the distribution of separator lengths. It is also pointed out that, under the parallel flaring model, inferred waiting-time distributions are naturally interpreted as a superposition of individual point processes. Only a modest number of flaring separators is required to mimic a Poisson process.  相似文献   

15.
Frequency distributions and correlations of solar X-ray flare parameters   总被引:3,自引:0,他引:3  
We have determined frequency distributions of flare parameters from over 12000 solar flares recorded with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) satellite. These parameters include the flare duration, the peak counting rate, the peak hard X-ray flux, the total energy in electrons, and the peak energy flux in electrons (the latter two computed assuming a thick-target flare model). The energies were computed above a threshold energy between 25 and 50 keV. All of the distributions can be represented by power laws above the HXRBS sensitivity threshold. Correlations among these parameters are determined from linear regression fits as well as from the slopes of the frequency distributions. Variations of the frequency distributions were investigated with respect to the solar activity cycle.Theoretical models for the frequency distribution of flare parameters depend on the probability of flaring and the temporal evolution of the flare energy build-up. Our results are consistent with stochastic flaring and exponential energy build-up, with an average build-up time constant that is 0.5 times the mean time between flares. The measured distributions of flares are also consistent with predicted distributions of flares from computer simulations of avalanche models that are governed by the principle of self-organized criticality.  相似文献   

16.
A. A. Akopian 《Astrophysics》1999,42(4):419-424
The question of the possible variation of the flare frequency of flare stars is considered. Translated from Astrofizika, Vol. 42, No. 4, pp. 555–562, October–December, 1999.  相似文献   

17.
A new method is proposed for determining the frequency distribution of bursts from randomly flashing objects based on fitting Pearson distributions by the method of moments. This method is applied to flare stars in the Pleiades cluster and the Orion association. The desired frequency distribution of the bursts from flare stars can be approximated by a gamma distribution. The burst frequency distribution describes the observed statistical picture fairly well. The result is compared with other methods.  相似文献   

18.
Wheatland  M.S. 《Solar physics》2001,203(1):87-106
Rates of flaring in individual active regions on the Sun during the period 1981–1999 are examined using United States Air Force/Mount Wilson (USAF/MWL) active-region observations together with the Geostationary Operational Environmental Satellite (GOES) soft X-ray flare catalog. Of the flares in the catalog above C1 class, 61.5% are identified with an active region. Evidence is presented for obscuration, i.e. that the increase in soft X-ray flux during a large flare decreases the likelihood of detection of soft X-ray events immediately following the large flare. This effect means that many events are missing from the GOES catalog. It is estimated that in the absence of obscuration the number of flares above C1 class would be higher by (75±23)%. A second observational selection effect – an increased tendency for larger flares to be identified with an active region – is also identified. The distributions of numbers of flares produced by individual active regions and of mean flaring rate among active regions are shown to be approximately exponential, although there are excess numbers of active regions with low flare numbers and low flaring rates. A Bayesian procedure is used to analyze the time history of the flaring rate in the individual active regions. A substantial number of active regions appear to exhibit variation in flaring rate during their transit of the solar disk. Examples are shown of regions with and without rate variation, illustrating the different distributions of times between events (waiting-time distributions) that are observed. A piecewise constant Poisson process is found to provide a good model for the observed waiting-time distributions. Finally, applications of analysis of the rate of flaring to understanding the flare mechanism and to flare prediction are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号