首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用CE318型自动太阳光度计在2010年3~5月期间的观测数据,分析了沿海城市——天津市在沙尘与灰霾天气条件下大气气溶胶的光学与物理特性。主要参数包括:气溶胶光学厚度、Angstrom波长指数、散射相函数、单次散射反照率、复折射指数以及粒子体积谱分布。观测结果表明,在该季节的大气气溶胶光学特性主要受到人为和陆地沙尘的共同作用,不同天气条件下,大气气溶胶的光学与物理特性差异明显。  相似文献   

2.
利用2003—2008年在渤海所测的212组气溶胶数据,研究了气溶胶光学厚度(AOT)、浑浊度系数(β)和ngstrm指数α的时空分布规律,并初步探讨了气溶胶特征参数之间的关系。结果表明,在时间分布方面,渤海气溶胶光学厚度、浓度和粒径尺度在一天中的变化比较小,中午AOT较大,10点左右AOT较小。从6月份到9月份,AOT、β和α的范围和均值均呈下降趋势;3月份AOT、β和α均明显小于六、8、9月份的对应值。离岸25km之内的大部分地区,AOT随离岸距离的增大而减小;但25km以外,气溶胶变化没有规律。比较而言,气溶胶AOT和β变化比较一致。浑浊度系数(浓度因子)β比ngstrm指数(尺度因子)α对气溶胶光学厚度AOT的影响更明显,AOT和β的关系可采用一阶线性回归方程表示。  相似文献   

3.
利用设立于厦门岛西南部沿海的气溶胶地基观测站点2008年1月7日至2009年4月30日的观测资料,对厦门海域气溶胶光学厚度的每日逐时变化、逐日变化、逐月变化进行了分析研究,并利用观测结果对MODIS L2级气溶胶光学厚度(AOT)产品进行检验。结果表明,厦门海域气溶胶光学厚度每日逐时变化和逐月变化有一定的季节规律,而逐日变化随气象条件的不同有很大差异。一年中气溶胶光学厚度月平均值呈现春秋季双峰分布趋势,4月份最大,超过0.9,空气较为混浊;6月份呈现谷值,AOT小于0.3,空气相对清洁。夏季气溶胶主控粒子的粒径较大,而其余各月份的波长指数在平均值1.21附近波动,混浊系数年平均值为0.25。利用该地基观测资料对MODIS L2级AOD产品进行检验,MODIS反演的厦门海域气溶胶光学厚度逐月变化趋势和地基观测结果完全一致,表明MODIS卫星遥感气溶胶光学厚度能比较好地反映厦门海域的气溶胶季节变化特征。  相似文献   

4.
南海北部气溶胶光学厚度观测研究   总被引:5,自引:0,他引:5  
利用2004年南海北部开放航次全程使用多波段太阳光度计观测获得的气溶胶光学厚度资料,对南海北部气溶胶光学厚度(AOD)的时空分布特征、气溶胶类型和来源等进行了分析。结果显示,近岸海域AOD值大,基本在0.5(500nm)以上,远离大陆的区域AOD值小,基本在0.2(500nm)以下。AOD值与污染源区丁业生产水平和气流输送密切相关,受珠三角地区丁业高度发展和冷空气南下的影响,在珠江口南部出现AOD高值中心;由于受台湾西南部工业区和东北信风的影响,台湾岛西南部海域AOD值偏大。3天的个例分析显示,海洋上空的AOD值上午和下午略高,中午最小,AOD与大气水汽含量呈正相关。Angstrom波长指数分析显示,大陆沿海海域气溶胶以小粒子为主,远离大陆海域以海盐粒子为主。  相似文献   

5.
基于卫星的气溶胶光学厚度(aerosol optical thickness,AOT)是研究大气污染程度及时空变化的重要参考,由于大气污染物排放特征、地理和气候背景不同,不同区域AOT的时空分布及其与地面大气污染物质量浓度的相关性存在一定的差异.选取了2017年7月-2020年7月山东89个国家环境空气质量监测站数据、...  相似文献   

6.
在卫星数据反演气溶胶光学厚度产品的基础上,讨论了二次反演大气柱中气溶胶粒子密度的问题.通过理论分析,利用多波段气溶胶光学厚度提取大气柱中气溶胶粒子密度是可行的,并指出能否准确确定多波段气溶胶光学厚度会直接影响粒子密度的反演结果.定义并分析了气溶胶粒子消光体积权重系数随粒子半径的变化,表明从气溶胶光学厚度中反演大气柱中气溶胶积聚模态和粗模态粒子密度的结果是可信的.利用SeaWiFS气溶胶光学厚度产品,运用蒙特卡罗法反演了2002年我国海域上空大气柱中积聚模态和粗模态气溶胶粒子密度,结果表明,积聚模态粒子密度比粗模态的高2~3个量级,它们的空间分布趋势一致;我国近岸海域大气柱中气溶胶粒子密度高于离岸海域的;春季气溶胶粒子密度高于其他季节的,特别在黄海、东海海区是如此.  相似文献   

7.
气溶胶光学厚度(AOD)是表征大气浑浊程度的关键的物理量,也是确定气溶胶气候效应的重要因素。本文以环渤海区域为例,首先利用太阳光度计观测数据对MODIS数据气溶胶光学厚度产品进行验证分析,暗像元法反演结果最好;然后基于2005年1月至2019年2月MODIS暗像元法反演结果分析环渤海地区气溶胶光学厚度的时空分布。结果表明:环渤海地区AOD分布呈现出明显的季节变化,春夏季节气溶胶处于高值区(0.7-0.9),秋冬季节处于低值区(0.2-0.5),AOD高值区主要分布于北京、天津及河北和山东交界地区。气溶胶分布特征可能与沙尘天气、季风变化和工业生产生活的污染物排放有关。  相似文献   

8.
北京市大气气溶胶体积谱特性分析   总被引:1,自引:0,他引:1  
本文利用AERONET的气溶胶月平均数据,分析了北京市大气气溶胶体积谱的季节性变化,并对气溶胶体积谱与光学厚度、Angstrom指数、小颗粒比例以及单次散射反照率的关系进行分析。分析结果表明:在春季北京市气溶胶体积谱中粗模态粒子占的比重较大,峰值半径约为3μm;在夏季北京市气溶胶体积谱中细模态粒子占的比重较大,峰值半径约为0.25μm;影响粗模态峰值异常增大的主要因素是沙尘,影响细模态峰值异常增大的主要因素是温度和湿度;在吸收性粒子浓度较低情况下,细模态粒子占主导地位时,单次散射反照率随波长的增大而减小,粗模态粒子占主导地位时,单次散射反照率率波长的增大而增大。  相似文献   

9.
收集了中国黄渤海区域(112°~125°E,35°~45°N)2000—2009年10 a内MODIS气溶胶光学厚度AOD月均标准数据,按陆地和海洋(陆海)像元及海洋像元两类分别进行经验模态分解(EMD),结合南方涛动指数(SOI)和我国年度化石燃料消耗总量讨论黄渤海海区气溶胶时间变化特征及成因。研究表明该陆海区域大气气溶胶光学厚度6月份多为全年最高,海洋区域最高值出现在4—7月之间;秋冬季(10—次年2月)气溶胶光学厚度达到最低;EMD分解获得气溶胶具有4 a变化周期特性,与南方涛动指数的相关性均达到0.7,说明大气气溶胶同样受到全球气候变化的影响;与我国煤炭化石年消耗量相关系数达到0.98,该研究区气溶胶受陆源影响明显,人类活动对海洋环境的作用不容忽视。  相似文献   

10.
渤海及北黄海气溶胶分布特征和大气校正研究   总被引:2,自引:0,他引:2  
根据2003-2005年三年夏季渤海及北黄海海上调查资料,使用浑浊度系数α和埃斯特朗指数β描述气溶胶的光学厚度,对该海域上空气溶胶分布特征进行了分析.调查数据显示,浑浊度系数α的范围是0.03~2.76,大部分站点α集中分布在1个比较小的范围内;埃斯特朗指数β的范围是0.12~1.64,其分布较分散.在β=1.3处存在一个β最大值,在β<0.8的范围分布相对均匀.分析还发现,气溶胶的光学厚度与标准化气压有明显的负相关(相关系数为-0.42),特别是二者对应变化曲线的跨零点基本重合.在数据分析的基础上,作者提出了两尺度气溶胶的光学厚度模型以及对应的两尺度气溶胶散射的反射率模型,这样可将传统气溶胶模型中乘幂形式的两个变量结合改为两个变量线性组合,从而将气溶胶散射的反射率并入整体反演公式,使之有可能被用于水色遥感的线性系统算法,从而避免传统大气校正的过程,这为二类水体水色反演提供了一种新思路.  相似文献   

11.
黄海、东海上空春季气溶胶光学特性观测分析   总被引:11,自引:5,他引:11  
2003年春季国家卫星海洋应用中心等几家单位在黄海和东海海区进行了为期40 d的二类水体信息测量试验,试验中使用手持太阳辐射计对海区上空大气光学特性进行了观测,并获得了大量晴空天气条件下的大气光学数据.利用本次试验获取的测量数据得到了黄海、东海海区春季的大气气溶胶光学特性,其中包括气溶胶光学厚度和气溶胶粒子谱分布.采用Langley方法对测量得到的太阳直射辐射量进行处理得到了海区上空气溶胶光学厚度,利用得到的气溶胶光学厚度来反演气溶胶粒子谱分布.反演结果表明无云情况下黄海、东海上空的气溶胶光学厚度在0.2~0.4左右,且气溶胶粒子谱分布的变化趋势也很接近;海区上空霾层较厚时测量得到的气溶胶光学厚度明显增大,最大接近0.8;气溶胶粒子谱分布的变化趋势发生了明显的变化.  相似文献   

12.
阐述了气溶胶散射对太阳光衰减的影响和对观测数据的统计分析.作者使用手持式五波段太阳光度计和臭氧监测仪对青岛崂山区陆域和渤海海域的大气衰减进行了较长时间的观测.分析表明,对可见光和近红外波段电磁渡的大气衰减贡献最大的是气溶胶散射,气溶胶散射的光学厚度随波长的增大而减小,但是它在大气总光学厚度中占的比例随波长的增大而增加.在青岛崂山区冬季,对应于440nm波长的气溶胶散射光学厚度主要分布在0.4~0.6和1.5~1.6区间,浑浊度系数α主要分布在0.15~0.45区间,埃斯特朗指数β主要分布在1.0~1.4区间.从时间上看,α和β在1d内的变化不大,但逐日变化非常显著.与晴天相比,青岛崂山区冬季雾天的气溶胶散射光学厚度增加了大约一倍,较大的浑浊度系数和较小的埃斯特朗指数表明,雾天的大气具有气溶胶散射的光学厚度大、粒子浓度大和粒径尺度大的特点.通过与海上观测数据的比较可见,青岛崂山区陆地冬季在雾天时的气溶胶分布与渤海夏季时相似,青岛崂山区陆地冬季在晴天无云时的气溶胶分布与渤海秋季时相似.  相似文献   

13.
气象条件对青岛地区气溶胶光学特性的影响   总被引:8,自引:0,他引:8  
利用 2 0 0 2年 4月至 2 0 0 3年 10月多波段太阳光度计资料和同期的气象观测资料 ,分析了不同气象条件下青岛气溶胶光学特性的变化。气象条件的转变与青岛地区气溶胶光学特性之间具有很好的响应关系 :南风盛行时会加大光学厚度 ,并增强气溶胶对 >5 0 0nm波段太阳辐射的散射能力 ;轻雾和霾在青岛气溶胶光学厚度中占有较大比重 ,而霾对 <5 0 0nm波段辐射的散射能力较强。  相似文献   

14.
研究了非洲地区大气气溶胶光学厚度(AOD)的时空变化及沙尘气溶胶越大西洋海区的传输。结果表明:1)源于撒哈拉沙漠的沙尘及其随赤道东风向西输送使得沙尘气溶胶成为非洲沙漠地区和紧邻的大西洋海区的主要气溶胶组分; AOD高值区和沙尘气溶胶光学厚度高值区在1—7月随赤道辐合带北移同步向北移动,而在8—12月则向南回撤。2)刚果盆地大气气溶胶主要为热带雨林和稀树草原排放的有机碳(OC)和黑碳(BC)气溶胶;其中与生物质燃烧源排放有关的OC、BC高值主要集中在干季(6—9月)的后半段(8—9月);而生物源OC排放全年连续,其排放峰值出现于雨季开始时;生物质燃烧排放高值期与生物源排放高值期前后相继,形成干季(尤其是后半段)时期的OC、BC光学厚度高值。3)亚马逊河入海口地区主要气溶胶组分为海盐气溶胶,9—11月该区风力输送增强,风向由东南风转变为东风,海盐进入亚马逊河入海口处,形成AOD和海盐气溶胶光学厚度高值区。4)撒哈拉沙漠沙尘气溶胶向大西洋传输的偏北月份为7—9月、偏南月份为1—3月; 2000—2016年海区沙尘气溶胶的传输路径存在向南移动的变化趋势,与同期亚速尔高压的增强和沙尘传输路径以北北风分量的增强以及赤道辐合带的移动一致。上述研究结果揭示了利用大气气溶胶时空变化特征反映区域大气环流和气候变化的可能性。  相似文献   

15.
大气气溶胶中若干有机物的含量和季节变化   总被引:4,自引:2,他引:2  
研究、探讨青岛近岸大气气溶胶中多芳烃类化合物的浓度水平、变化特征及影响因素。用高效液相色谱荧光检测法分析了青岛近岸大气气溶胶中的多环芳烃(PAHs)的含量水平,共检出13种多环芳烃化合物。结果表明该类化合物总量(∑PAHs)具有明显的季节特征,呈现春季<秋季<冬季的特征,人类活动可能是其主要来源。  相似文献   

16.
本文利用Terra卫星MODIS传感器2000—2011年550nm气溶胶光学厚度(AOD)资料,AERONET东亚站点Angstrom指数资料,以及NCEP/NCAR的2000—2011年位势高度资料,用经验正交函数分解方法(EOF)分析了近12a东亚AOD时空变化特征,同时通过研究AOD与夏季850hPa西太平洋副热带高压的关系,初步分析了AOD对气候可能产生的影响。结果表明,EOF第一模态东亚大部分地区AOD同位相变化,北方振幅最大,越往南振幅越小,17°N以南出现反位相,这在春季最显著。第二模态南北方呈明显反位相,春夏季最显著。进一步分析认为第一模态主要受沙尘气溶胶影响,第二模态主要受工业气溶胶影响。关于东亚AOD对气候可能的影响,通过东亚AOD与西太平洋副热带高压西脊点指数(IW)的相关性分析,发现4月份海上AOD对6月份IW有较明显的2个月超前相关,该相关大致以22.5°N为界,以北呈负相关,以南呈正相关。分析认为这与沙尘气溶胶及炭黑气溶胶的辐射强迫有关。  相似文献   

17.
气溶胶光学厚度的时空变化   总被引:2,自引:0,他引:2  
在大气中气溶胶微粒是一种重要的大气微量成分。气溶胶光学厚度也是大气校正所需的重要大气参数,同时也是海洋水色卫星主要的数据产品。由于气溶胶光学厚度的时空变化较大,所以如何准确获取大气校正和卫星数据产品真实性检验所需的气溶胶光学厚度则是至关重要的。在简述气溶胶光学性质的基础上,并结合2002年6月HY—1南海实验数据来阐述现场气溶胶光学厚度的准确获取。  相似文献   

18.
文章基于2001—2014年间中等分辨率成像光谱仪(MODIS)气溶胶光学厚度数据和NOAA提供的海表温度数据,首先利用经验正交函数分析中国气溶胶光学厚度的时空变化特征,然后用奇异值分解法分析中国气溶胶光学厚度和太平洋海表温度之间的时空联系。结果表明:1中国陆地气溶胶光学厚度存在两个主要模态,第一模态气溶胶光学厚度分布变化一致,其中华北平原存在大值中心,对应的时间系数呈显著减小趋势,且存在4~5年的周期;第二模态则对应南北区域的反位相变化。2SVD第一模态显示中国陆地气溶胶光学厚度与中东太平洋海表温度呈负相关,与中东太平洋两侧的区域呈正相关;第二模态则显示出西北区域与西太平洋中纬度地区的高正相关性。  相似文献   

19.
基于海洋光学辐射传输原理,采用蒙特卡洛方法,建立水体光学特性的正演模型,该模型可以利用水体的固有光学特性作为输入,模拟水体的表观光学特性。文中将其应用在我国近岸海域,利用本模型与2003年春季黄东海区的实测数据进行模拟,并对模拟所得遥感反射率光谱的谱型和数值与实测数据进行对比分析,结果表明:模型给出的遥感反射率的模拟结果与实测数据谱型一致,符合我国近岸二类水体的典型光谱,并且数值偏差能够控制在20%以内,为今后进一步研究我国近岸水体光学特性打下基础。  相似文献   

20.
气溶胶是研究大气辐射收支的重要参数,确定气溶胶光学特性对于研究气候变化和实现卫星定量遥感有重要意义。针对黄海上空气溶胶反演时存在下垫面背景受到内陆河流巨大影响及吸收性气溶胶干扰的问题,本文提出了一种基于GOCI数据的气溶胶光学厚度反演新算法,利用AERONET数据对比分析了黄海上空气溶胶光学厚度的反演精度,结果表明该算法能较好地反演气溶胶光学厚度,相比业务化算法具有较高的反演精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号