首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global Warming and Coastal Erosion   总被引:6,自引:0,他引:6  
One of the most certain consequences of global warming is an increase of global (eustatic) sea level. The resulting inundation from rising seas will heavily impact low-lying areas; at least 100 million persons live within one meter of mean sea level and are at increased risk in the coming decades. The very existence of some island states and deltaic coasts is threatened by sea level rise. An additional threat affecting some of the most heavily developed and economically valuable real estate will come from an exacerbation of sandy beach erosion. As the beach is lost, fixed structures nearby are increasingly exposed to the direct impact of storm waves, and will ultimately be damaged or destroyed unless expensive protective measures are taken. It has long been speculated that the underlying rate of long-term sandy beach erosion is two orders of magnitude greater than the rate of rise of sea level, so that any significant increase of sea level has dire consequences for coastal inhabitants. We present in this paper an analytical treatment that indicates there is a highly multiplicative association between long-term sandy beach erosion and sea level rise, and use a large and consistent data base of shoreline position field data to show that there is reasonable quantitative agreement with observations of 19th and 20th century sea levels and coastal erosion. This result means that the already-severe coastal erosion problems witnessed in the 20th century will be exacerbated in the 21st century under plausible global warming scenarios.  相似文献   

2.
G. Jordà  D. Gomis  M. Marcos 《Climatic change》2012,113(3-4):1081-1087
Troccoli et al. (Climatic Change, published online 14th May, DOI: 10.1007/s10584-011-0093-x), analysed different projections from global climate models in order to assess the frequency of storm surges in Venice during the 21st century under a climate change context. They concluded that the frequency of storm surges would decrease by about 30%, and that this reduction would compensate the expected mean sea level rise. Their final statement was that “the frequency of extreme tides in Venice might largely remain unaltered”. Although we agree in the expected reduction of storm surges, we strongly disagree in their final conclusion. First, because the impact of storm surges not only depends on the number of extreme surge events, but also on their intensity, that was not explicitely addressed. Second, because their estimates of mean sea level change for the 21st century are largely underestimated, as they miss some of the components driving sea level variability. Using state-of-the-art estimates for the thermosteric, mass and tidal contributions we show that the flooding events in Venice are expected to dramatically increase in a climate change scenario.  相似文献   

3.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

4.
Global average sea levels are expected to rise by up to a metre by the end of the century. This long-term rise will combine with shorter-term changes in sea level (e.g. high tides, storm surges) to increase risks of flooding and erosion in vulnerable coastal areas. As communities become increasingly exposed to these risks, understanding their beliefs and responses becomes more important. While studies have explored public responses to climate change, less research has focused on perceptions of the specific risks associated with sea-level change. This paper presents the results of a mental models study that addressed this knowledge gap by exploring expert and public perceptions of sea-level change on the Severn Estuary, a threatened coastal environment in the southwest of the United Kingdom. A model was developed from the literature and expert interviews (N = 11), and compared with public perceptions elicited via interviews (N = 20) and a quantitative survey (N = 359). Whilst we find a high degree of consistency between expert and public understandings, there are important differences that have implications for how sea level risks are interpreted and for what are perceived as appropriate mitigation and adaptation practices. We also find a number of potential barriers to engaging with the issue: individuals express low concern about sea-level change in relation to other matters; they feel detached from the issue, seeing it as something that will happen in future to other people; and many perceive that neither the causes of nor responses to sea-level change are their responsibility. We point to areas upon which future risk communications should therefore concentrate.  相似文献   

5.
For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.  相似文献   

6.
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input–output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.  相似文献   

7.
Monitoring sea level changes   总被引:3,自引:0,他引:3  
Future sea level rise arouses concern because of potentially deleterious impacts to coastal regions. These will stem not only from the loss of land through inundation and erosion, but also from increased frequency of storm floods, with a rising base level, even with no change in storm climatology, and from saltwater intrusion and greater amounts of waterlogging. Current sea level trends are important in formulating an accurate baseline for future projections. Sea level, furthermore, is an important parameter which integrates a number of oceanic and atmospheric processes. The ocean surface demonstrates considerable variability on diurnal, seasonal, and interannual time scales, induced by winds, storm waves, coastal upwelling, and geostrophic currents. Secular trends in sea level arise from changes in global mean temperature and also from crustal deformation on local to regional scales. The challenge facing researchers is how best to extract the climate signal from this noise.This paper re-examines recent estimates of sea level rise, discusses causes of variability in the sea level records, and describes methods employed to filter out some of these contaminating signals. Evidence for trends in long-term sea level records and in extreme events is investigated. Application of satellite geodesy to sea level research is briefly reviewed.  相似文献   

8.
Shanghai is a low-lying city (3–4?m elevation) surrounded on three sides by the East China Sea, the Yangtze River Estuary, and Hangzhou Bay. With a history of rapid changes in sea level and land subsidence, Shanghai is often plagued by extreme typhoon storm surges. The interaction of sea level rise, land subsidence, and storm surges may lead to more complex, variable, and abrupt disasters. In this paper, we used MIKE 21 models to simulate the combined effect of this disaster chain in Shanghai. Projections indicate that the sea level will rise 86.6?mm, 185.6?mm, and 433.1?mm by 2030, 2050, and 2100, respectively. Anthropogenic subsidence is a serious problem. The maximum annual subsidence rate is 24.12?mm/year. By 2100, half of Shanghai is projected to be flooded, and 46?% of the seawalls and levees are projected to be overtopped. The risk of flooding is closely related to the impact of land subsidence on the height of existing seawalls and levees. Land subsidence increases the need for flood control measures in Shanghai.  相似文献   

9.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

10.
La Ceiba, Honduras, a city of about 200,000 people, lies along the Caribbean Sea, nestled against a mountain range and the Rio Cangrejal. The city faces three flooding risks: routine flooding of city streets due to the lack of a stormwater drainage system; occasional major flooding of the Rio Cangrejal, which flows through the city; and flooding from heavy rainfall events and storm surges associated with tropical cyclones. In this study, we applied a method developed for the U.S. Agency for International Development and then worked with stakeholders in La Ceiba to understand climate change risks and evaluate adaptation alternatives. We estimated the impacts of climate change on the current flooding risks and on efforts to mitigate the flooding problems. The climate change scenarios, which addressed sea level rise and flooding, were based on the Intergovernmental Panel on Climate Change estimates of sea level rise (Houghton et al. 2001) and published literature linking changes in temperature to more intense precipitation (Trenberth et al., Bull Am Meteorol Soc, 84:1205–1217, 2003) and hurricanes (Knutson and Tuleya, J Clim, 17:3477–3495, 2004). Using information from Trenberth et al., Bull Am Meteorol Soc, 84:1205–1217, (2003) and Knutson and Tuleya, J Clim, 17:3477–3495, 2004, we scaled intense precipitation and hurricane wind speed based on projected temperature increases. We estimated the volume of precipitation in intense events to increase by 2 to 4% in 2025 and by 6 to 14% by 2050. A 13% increase in intense precipitation, the high scenario for 2050, could increase peak 5-year flood flows by about 60%. Building an enhanced urban drainage system that could cope with the estimated increased flooding would cost one-third more than building a system to handle current climate conditions, but would avoid costlier reconstruction in the future. The flow of the Rio Cangrejal would increase by one-third from more intense hurricanes. The costs of raising levees to protect the population from increased risks from climate change would be about $1 million. The coast west of downtown La Ceiba is the most vulnerable to sea level rise and storm surges. It is relatively undeveloped, but is projected to have rapid development. Setbacks on coastal construction in that area may limit risks. The downtown coastline is also at risk and may need to be protected with groins and sand pumping. Stakeholders in La Ceiba concluded that addressing problems of urban drainage should be a top priority. They emphasized improved management of the Rio Cangrejal watershed and improved storm warnings to cope with risks from extreme precipitation and cyclones. Adoption of risk management principles and effective land use management could also help reduce risks from current climate and climate change.  相似文献   

11.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   

12.
A simple technique for estimating an allowance for uncertain sea-level rise   总被引:2,自引:1,他引:1  
John Hunter 《Climatic change》2012,113(2):239-252
Projections of climate change are inherently uncertain, leading to considerable debate over suitable allowances for future changes such as sea-level rise (an ??allowance?? is, in this context, the amount by which something, such as the height of coastal infrastructure, needs to be altered to cope with climate change). Words such as ??plausible?? and ??high-end?? abound, with little objective or statistically valid support. It is firstly shown that, in cases in which extreme events are modified by an uncertain change in the average (e.g. flooding caused by a rise in mean sea level), it is preferable to base future allowances on estimates of the expected frequency of exceedances rather than on the probability of at least one exceedance. A simple method of determining a future sea-level rise allowance is then derived, based on the projected rise in mean sea level and its uncertainty, and on the variability of present tides and storm surges (??storm tides??). The method preserves the expected frequency of flooding events under a given projection of sea-level rise. It is assumed that the statistics of storm tides relative to mean sea level are unchanged. The method is demonstrated using the GESLA (Global Extreme Sea-Level Analysis) data set of roughly hourly sea levels, covering 198 sites over much of the globe. Two possible projections of sea-level rise are assumed for the 21st century: one based on the Third and Fourth Assessment Reports of the Intergovernmental Panel on Climate Change and a larger one based on research since the Fourth Assessment Report.  相似文献   

13.
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.  相似文献   

14.
Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).  相似文献   

15.
The possibility of extreme sea-level rise is one of the commonly cited reasons for concern about climate change. Major increases in sea level would likely be driven by the melting or collapse of major ice sheets. This possibility has implications for the social cost of carbon dioxide, which is a key policy value as well as a useful summary measure of damage caused by greenhouse gas emissions.This paper extends earlier work on the importance of low-probability, high-impact events for the social cost of carbon dioxide to incorporate the possibility of extreme sea-level rise.To estimate its impact, an integrated assessment model is used, which allows a probabilistic assessment of climate change damages based on the linkages between the economic and climate systems. In the model, the generic discontinuity damage is replaced with the possibility of large-scale damage from factors that are taken to be correlated with temperature rise and, crucially for this paper, explicit consideration of extreme sea-level rise.Estimates of the amount of increase in the social cost of carbon dioxide that can be expected from incorporating extreme sea-level rise show that the increase is significant, though not especially large in percentage terms.The paper contributes to the literature of how to represent uncertain climate impacts in integrated assessment models and the associated estimation of the social cost of carbon dioxide.  相似文献   

16.
This paper presents a scenario-based study that investigates the interaction between sea-level rise and land subsidence on the storm tides induced fluvial flooding in the Huangpu river floodplain. Two projections of relative sea level rise (RSLR) were presented (2030 and 2050). Water level projections at the gauging stations for different return periods were generated using a simplified algebraic summation of the eustatic sea-level rise, land subsidence and storm tide level. Frequency analysis with relative sea level rise taken into account shows that land subsidence contributes to the majority of the RSLR (between 60 % and 70 %). Furthermore, a 1D/2D coupled flood inundation model (FloodMap) was used to predict the river flow and flood inundation, after calibration using the August 1997 flood event. Numerical simulation with projected RSLR suggests that, the combined impact of eustatic sea-level rise and land subsidence would be a significantly reduced flood return period for a given water level, thus effective degradation of the current flood defences. In the absence of adaptation measures, storm flooding will cause up to 40 % more inundation, particularly in the upstream of the river.  相似文献   

17.
The Sundarbans mangrove ecosystem, shared by India and Bangladesh, is recognized as a global priority for biodiversity conservation. Sea level rise, due to climate change, threatens the long term persistence of the Sundarbans forests and its biodiversity. Among the forests’ biota is the only tiger (Panthera tigris) population in the world adapted for life in mangrove forests. Prior predictions on the impacts of sea level rise on the Sundarbans have been hampered by coarse elevation data in this low-lying region, where every centimeter counts. Using high resolution elevation data, we estimate that with a 28 cm rise above 2000 sea levels, remaining tiger habitat in Bangladesh’s Sundarbans would decline by 96% and the number of breeding individuals would be reduced to less than 20. Assuming current sea level rise predictions and local conditions do not change, a 28 cm sea level rise is likely to occur in the next 50–90 years. If actions to both limit green house gas emissions and increase resilience of the Sundarbans are not initiated soon, the tigers of the Sundarbans may join the Arctic’s polar bears (Ursus maritimus) as early victims of climate change-induced habitat loss.  相似文献   

18.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   

19.
Storm surges in the Western Baltic Sea: the present and a possible future   总被引:3,自引:1,他引:2  
Globally-coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature or mean sea level. However, the global models do not perform as well on regional/local scales. Here, we present results from four 100-year ocean model experiments for the Western Baltic Sea. In order to simulate storm surges in this region, we have used the General Estuarine Transport Model (GETM) as a high-resolution local model (spatial resolution ≈ 1?km), nested into a regional atmospheric and regional oceanic model in a fully baroclinic downscaling approach. The downscaling is based on the global model ECHAM5/MPI-OM. The projections are imbedded into two greenhouse-gas emission scenarios, A1B and B1, for the period 2000–2100, each with two realisations. Two control runs from 1960 to 2000 are used for validation. We use this modelling system to statistically reproduce the present distribution of surge extremes. The usage of the high-resolution local model leads to an improvement in surge heights of at least 10% compared to the driving model. To quantify uncertainties associated with climate projections, we investigate the impact of enhanced wind velocities and changes in mean sea levels. The analysis revealed a linear dependence of surge height and mean sea level, although the slope parameter is spatially varying. Furthermore, the modelling system is used to project possible changes within the next century. The results show that the sea level rise has greater potential to increase surge levels than does increased wind speed. The simulations further indicate that the changes in storm surge height in the scenarios can be consistently explained by the increase in mean sea level and variation in wind speed.  相似文献   

20.
采用理论分析与数值计算相结合的方法研究了理想开阔海域中的台风暴潮模型,讨论了开阔海域中移行台风下的海洋响应。分析表明,在开阔的浅海域,台风下的海洋运动以地转流为主,同时又激发出振幅较小的重力惯性流。重力惯性波是由于台风强度或移速的突然变化引起的,其波速通常大于台风移速。台风气压场造成海面升高且基本符合“静压效应”,但产生的正压流场非常微弱。伴随强风的气旋性风场造成的海面下降在台风经过之后可以维持很长时间,从而在台风后面形成一个长达几百公里的尾迹。而台风风应力和气压梯度力的总效果是在台风正前方造成海面上升,正后方造成海面下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号