首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the subaqueous growth and emergence of a basaltic volcano clasts are formed by one or a combination of (1) explosive release of magmatic volatiles; (2) explosive expansion and collapse of steam formed at magma-water contact surfaces; (3) explosive expansion of steam following enclosure of water in magma, or entrapment of water close to magma; and (4) cooling-contraction. These processes, named respectivelymagmatic explosivity, contact-surface steam explosivity, bulk interaction steam explosivity, andcooling-contraction granulation, can be enhanced by mutual interaction and feedback. The first three (explosive) processes are limited at certain water depths (hydrostatic pressures) and become increasingly vigorous at shallower levels. The depth of onset of magmatic explosivity depends largely on juvenile volatile content; it is up to 200 m for tholeiitic magmas and up to 1 km for alkalic magmas. At the depth where formation of clastic deposits becomes predominant over effusion of lavas, magmatic explosivity is subordinate to steam explosivity as a clast-forming process. The upward transition to accumulation of dominantly clastic deposits is not simply related to the onset of substantial exsolution of magmatic volatiles and can occur without it. Contact-surface explosivity commonly requires initiation by a vigorous impact between magma and water and, although no certain depth limit is known, likelihood of such explosivity decreases rapidly with depth. Clast generation by bulk interaction explosivity appears to be restricted to depths much shallower than that of the critical pressure of water, which in sea water is at about 3 km. Cooling-contraction granulation can occur in any depth of water, but at shallow levels may be replaced by contact-surface explosivity. During continuous eruption under water, tephra can be ejected and deposited within a cupola of steam such that rapid quenching does not occur. Emergent volcanoes are characterized by distinctive steam-explosive activity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry of clastic material, water, and steam. The water gets into the vent by flooding across or through the top of the tephra pile, and violent explosions cease when this access is sealed. The eruptions during emergence of Surtsey and Capelinhos typify the distinctive explosive activity, the style and controls of which are different from those of maar volcanoes.  相似文献   

2.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

3.
Explosive activity at Arenal and associated tephra fall that has occurred over the 14-year period from 1987–2001 is described. Explosions have been notably variable in both frequency and size. A marked decrease in both frequency and quantity of tephra fallout occurred in early 1998 until the end of 2001. Grainsize distributions of cumulative tephra samples collected once a month are typically bimodal. Aggregation causing premature fallout of fine ash and possibly fallout from ash plumes produced by pyroclastic flows are considered responsible for the bimodality of fallout. Scanning electron microscopy of the glass component of tephra from single explosions show predominantly blocky and blocky/fluidal clast types, interpreted as being the product of vulcanian type explosions. Fragmentation of a mainly rigid, degassed magma body, and a minor molten component is inferred for these explosions. Pyroclastic flows were produced either associated with the larger explosions by a mechanism of column collapse (1987–1990), or unrelated to explosions by partial collapse of the crater wall (1993, 1998, 2000, 2001). Pyroclastic flow activity has migrated from west to north during the period reported. Pyroclastic flow deposits are variable in the quantity of juvenile material and any associated surge component. Large juvenile blocks were partially molten on emplacement and many have a typical cauliform texture. Blocks with both juvenile and lithic textures indicate that at the summit magma was in intimate contact with the pre-existing edifice, rather than as a simple open crater or lava pool. Crater wall collapse may have been promoted by the reduction in explosive activity, which has increased the lava accumulation at the summit and in turn increased instability of the summit region. Thus although explosive activity has waned, if the lava output is maintained, the hazard of pyroclastic flows is likely to continue.Editorial responsibility: R. Cioni  相似文献   

4.
Models of maar volcanoes,Lunar Crater (Nevada,USA)   总被引:2,自引:1,他引:1  
Maar volcanoes are generally understood to be the result of highly energetic, explosive interaction between magma and water (groundwater or surface water). Two end-member conceptual models have been proposed to explain the dimensions (diameter, depth) of maar craters: (1) an incremental growth model, where a crater grows due to subsidence and ejection of debris over the course of many explosions, and the final size is an integrated result of multiple explosive events; (2) a model in which the dimensions of a maar crater are the result of the largest single explosion during the lifetime of the maar (major-explosion dominated model). In the latter case, the maar size can be used to estimate the energy and depth of the largest explosion, which in turn allows estimation of the magma mass involved. This paper describes Lunar Crater maar (Nevada, USA) and tests the two models as explanations for the characteristics of the volcano, in particular the major-explosion dominated model. This model implies magma mass and supply rates that are unrealistic, and the tephra at the maar do not contain key features observed in the ejecta at large single-explosion craters. The incremental growth model seems most suitable based upon geological evidence.  相似文献   

5.
 The subaqueous phases of an eruption initiated approximately 85 m beneath the surface of Pleistocene Lake Bonneville produced a broad mound of tephra. A variety of distinctive lithofacies allows reconstruction of the eruptive and depositional processes active prior to emergence of the volcano above lake level. At the base of the volcano and very near inferred vent sites are fines-poor, well-bedded, broadly scoured beds of sideromelane tephra having local very low-angle cross-stratification (M1 lithofacies). These beds grade upward into lithofacies M3, which shows progressively better developed dunes and cross-stratification upsection to its uppermost exposure approximately 10 m below syneruptive lake level. Both lithofacies were emplaced largely by traction from relatively dilute sediment gravity flows generated during eruption. Intercalated lithofacies are weakly bedded tuff and breccia (M2), and nearly structureless units with coarse basal layers above strongly erosional contacts (M4). The former combines products of deposition from direct fall and moderate concentration sediment gravity flows, and the latter from progressively aggrading high-concentration sediment gravity flows. Early in the eruption subaqueous tephra jetting from phreatomagmatic explosions discontinuously fed inhomogeneous, unsteady, dilute density currents which produced the M1 lithofacies near the vent. Dunes and crossbeds which are better developed upward in M3 resulted from interaction between sediment gravity flows and surface waves triggered as the explosion-generated pressure waves and eruption jets impinged upon and occasionally breached the surface. Intermingling of (a) tephra emplaced after brief transport by tephra jets within a gaseous milieu and (b) laterally flowing tephra formed lithofacies M2 along vent margins during parts of the eruption in which episodes of continuous uprush produced localized water-exclusion zones above a vent. M4 comprises mass flow deposits formed by disruption and remobilization of mound tephra. Intermittent, explosive magma–water interactions occurred from the outset of the Pahvant eruption, with condensation, entrainment of water and lateral flow marking the transformation from eruptive to "sedimentary" processes leading to deposition of the mound lithofacies. Received: 10 October 1995 / Accepted: 18 April 1996  相似文献   

6.
Most if not all kimberlite pipes show a multitude of facies types, which imply that the pipes were emplaced under an episodic re-occurrence of eruptive phases, often with intermittent phases of volcanic quiescence. The majority of these facies can be related to either the fragmentation behaviour of the magma during emplacement or changing conditions during sedimentation of volcaniclastic deposits, as well as their alteration and compaction after deposition. An additional factor controlling pipe-facies architecture is the degree of mobility of the loci of explosions in the explosion chambers of the root zone or root zones at the base of the maar-diatreme volcano. In a growing pipe, the root zone moves downward and, with that movement, the overlying diatreme enlarges both in size and diameter. However, during the life span of the volcano, the explosion chamber can also move upward, back into the lower diatreme, where renewed explosions result in the destruction of older deposits and their structures. Next to vertical shifts of explosion chambers, the loci of explosions can also move laterally along the feeder dyke or dyke swarm. This mobility of explosion chambers results in a highly complex facies architecture in which a pipe can be composed of several separate root zones that are overlain by an amalgamated, crosscutting diatreme and maar crater with several lobes. Pipe complexity is amplified by periodic changes of the fragmentation behaviour and explosivity of kimberlite magma. Recent mapping and logging results of Canadian and African kimberlite pipes suggest that kimberlite magma fragmentation ranges from highly explosive with abundant entrained country rock fragments to weakly explosive spatter-like production with scarce xenoliths. On occasions, spatter may even reconstitute and form a texturally coherent deposit on the crater floor. In addition, ascending kimberlite magma can pass the loci of earlier fragmentation events in the root zone and intrudes as coherent hypabyssal kimberlite dykes in high pipe levels or forms extrusive lava lakes or flows on the crater floor or the syneruptive land surface, respectively. This highly variable emplacement behaviour is typical for basaltic maar-diatreme volcanoes and since similar deposits can also be found in kimberlites, it can be concluded that also the volcanological processes leading to these deposits are similar to the ones observed in basaltic pipes.  相似文献   

7.
Geologic mapping on a scale of 1:10000 and detailed stratigraphic studies of lava flows and tephra deposits of the Arenal-Chato volcanic system reveal a complex and cyclic volcanic history. This cyclicity provides insight into the evolution of magma batches during the growth of the andesitic volcanic system. The Arenal and Chato volcanoes have a central zone comprised of a lava armor and a distal zone comprised of a tephra apron. During Arenal's last two eruptive periods major craters formed near intersections of regional fractures at the lava armortephra apron transition. We suggest that such intersections are potential sites for future major explosions. The earliest rocks, i.e., the Chato lava flows, range in composition from basaltic andesite to andesite. These rocks, except for the andesitic domes of Chatito and La Espina, appear to have evolved from a common parental magma. The last active period of Chato volcano occurred 3550 B. P. The earliest known activity of Arenal volcano is 2900 B. P. Arenal lava flows have 54–56 wt% SiO2 and may be subdivided into a high-alumina group (HAG, Al2O3 = 20 wt%) and a low-alumina group (LAG, Al2O3 = 19 wt%). Compared to the HAG, the LAG also has smaller amounts of incompatible elements and higher amounts of FeO and MgO. Arenal tephra deposits were emplaced by Plinian-Sub-Plinian explosions occurring at 300±150-yr intervals. These deposits are compositionally zoned and alternate between dacite and basalt. The stratigraphy reveals an apparent magmatic cycle consisting of (a) dacitic-andesitic tephra, (b) HAG lava flows, (c) LAG lava flows, and (d) andesitic-basaltic tephra. This magmatic cycle is repeated four times during Arenal's history and is interpreted to have developed by the crystal fractionation and crystal redistribution of a single magma batch. The period of this cycle, and consequently the life of a magma batch, is about 800 years. If the cyclic pattern continues, a basaltic explosive phase may occur in the next 250 years.  相似文献   

8.
The fragmentation of magma and of the hosting country rocks is a major process in explosive eruptions. It is important to quantify the mechanical energy needed for fragmentation in order to assess the physical processes of this volcanic phenomenon. This paper presents a method to calculate the fragmentation energy of country rock using granulometry data of a typical phreatomagmatic Eifel maar volcano explosion. The total fracture area of country rock fragments in one tephra layer was quantified and related to the critical fragmentation energy of these country rocks. The rock parameters critical shear stress and critical fragmentation energy were determined experimentally, whereas the pre-volcanic crack inventory was measured in the field. The paper concludes with the calculation of the energy balance (i.e. partitioning of thermal energy into kinetical energy and mechanical energy of the fragmentation) of one Eifel maar volcanic explosion.  相似文献   

9.
We have recognized a type of pyroclastic deposit formed by the interaction of water and silicic magma during explosive eruptions. These deposits have a widespread dispersal, similar to plinian tephra, but the overall grain size is much tiner. Several deposits studied can be associated with caldera lakes or sea water and water/magma interaction is proposed to account for the fine grain size. Several examples have been studied, including the Oruanui Formation, N.Z., and the Askja 1875 deposit. Both show little downwind decrease in median diameter, a downwind decrease in sorting (σφ) (more evident in the Askja deposit) and coarse tail grading. The Askja example has base surge deposits near source and some Oruanui members show multiple thin beds near source; both are common features of phreatomagmatic deposits. Isopachs of the Askja deposit indicate a source under Lake Oskjuvatn in Askja Caldera and those of the Oruanui indicate a source under the NW part of Lake Taupo. In terms of dispersal area, volume and calculated eruption column heights, these deposits are similar to plinian. However, their extreme fragmentation due to magma/water interaction, superimposed on fragmentation imparted by carlier vesiculation, gives a much finer and more complex grain size distribution than plinian counterparts. The field of phreatomagmatic equivalents to plinian pumice deposits was unoccupied onWalker’s (1973) classification of explosive volcanic eruptions. Such deposits are the phreatomagmatic analogue of plinian deposits and the name « phreatoplinian » is proposed.  相似文献   

10.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

11.
The Atexcac maar is located in the central part of the Serdán–Oriental lacustrine/playa basin in the eastern Mexican Volcanic Belt. It is part of a dispersed and isolated monogenetic field consisting of maar volcanoes, basaltic cinder cones and rhyolitic domes. Atexac is a maar volcano excavated into pyroclastic deposits, basaltic lava flows and the flanks of a cinder cone cluster, which itself was built on a topographic high consisting of limestone. It has an ENE-trending elliptical shape with beds, mostly unconsolidated deposits that dip outward at 16–22°. The Atexcac crater was formed from vigorous phreatomagmatic explosions in which fluctuations in the availability of external water, temporal migration of the locus of the explosion, and periodic injection of new magma were important controls on the evolution of the maar crater. Variations in grain sizes and component proportions of correlated deposits from the different sections suggest a migration of the locus of explosions, producing different eruptive conditions with fluctuating water–magma interactions. Deposits rich in large intrusive and limestone blocks are associated with a matrix enriched in small andesitic lapilli. This could suggest differential degrees of fragmentation due to inherited (previously acquired) fragmentation and/or relative distance to the locus of explosions. Initial short-lived phreatic explosions started at the southwest part of the crater and were followed by an ephemeral vertical column and the influx of external water that led to relatively shallow explosive interactions with the ascending basaltic magma. Drier explosions progressed downward and/or laterally northward, sampling subsurface rock types, particularly intrusive, limestone and andesitic zones as well as localized altered zones (N-NE), caused by repetitive injection of basaltic magma. A final explosive phase involved a new injection of magma and a new influx of external water producing wetter conditions at the end of the maar formation. We infer the aquifer was formed by fractured rocks, predominantly andesitic lava flows and limestone rocks. Andesitic accessory clasts dominate in all stratigraphic levels but these rocks are not exposed in the nearby area. These local hydrogeological conditions contrast with those at nearby maar volcanoes, where the water for the magma/water interactions apparently mostly came from a dominantly unconsolidated tuffaceous aquifer, producing tuff rings with a much lower profile than Atexcac.  相似文献   

12.
The persistent activity of Yasur volcano, a post-caldera scoria cone in the southern Vanuatu Arc, along with the uniformity exhibited by its eruptive products, indicates that it is a “steady-state” volcano. This implies that rates of magma replenishment and tapping are in equilibrium. Examination of recently exposed tephra sequences suggests that Strombolian-style activity at Yasur has persisted in its current form for the last 630–850 years. Eruption of tephra with uniform grain size and texture throughout this period indicates invariant eruption magnitude and style. Based on tephra accumulation rates, a uniform, time-averaged eruption flux of ~410–480 m3 days?1 is estimated. Major and trace element analyses of glass shards and mineral grains from these tephra deposits show limited variation in magma composition throughout that time, consistent with a chemically buffered magma reservoir and models for steady-state volcanism. Similarly, mineral crystallisation temperature estimates are within error, suggesting the magma reservoir has retained a constant temperature through this time, while pressure estimates suggest shallow crystallisation. Eruptions appear to be driven by gas release, with small fluctuations in magma chemistry and eruptive behaviour governed by perturbations in volatile flux. This period of steady-state activity was preceded by ~600 years of higher-magnitude, lower-frequency eruptions during which less evolved compositions were erupted. Variation between these two styles of eruptive behaviour may be explained by a shift from a periodically closed to fully opened conduit, allowing more regular magma release and changes to degassing regimes. New radiocarbon ages suggest a period of irregular eruptive behaviour extending >1,400 year B.P. Overall, a transition from an irregular to a very steady magmatic system has occurred over the past ~2 kyr. Previously determined tectonic indicators for caldera resurgence in the area suggest revived magma replenishment after a hiatus following the caldera-forming Siwi eruption. This replenishment, while now supplying today’s constant activity, has not yet manifested itself in variations in composition or style/magnitude of eruptions.  相似文献   

13.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

14.
张雯倩  李霓 《地震地质》2021,43(1):105-122
高温岩浆在上升过程中遇到地下水或地表水发生水岩相互作用,产生大量水蒸汽导致的爆炸式喷发作用,可称为射汽岩浆喷发作用,是一种较为特殊的火山活动,主要产物为低平火山口和基浪堆积物.国内外许多火山学家对射汽岩浆喷发作用的喷发过程和产物开展了岩相学、沉积学、火山物理学和地球化学综合研究,通过实验、计算机模拟等方法探究了射汽岩浆...  相似文献   

15.
Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted portion of the ABT magma due to the low velocity of volatiles diffusion within a crystallizing magma body and/or to the short time between volatiles migration and the onset of the eruption. Furthermore, the increased amount of volatiles in this level of the chamber strongly affected the eruptive behavior. In fact, the emission of these products at the LAG vent, towards the end of the eruption, modified the eruptive style from classical strombolian to strongly explosive.  相似文献   

16.
Maar volcanoes represent a common volcano type which is produced by the explosive interaction of magma with external water. Here, we provide information on a number of maars in the ultrapotassic Sabatini Volcanic District (SVD, Roman Province) as young as ∼90 ka. The SVD maars are characterised in terms of crater and ejecta ring morphologies, eruptive successions and magma compositions, in light of the local substrate settings, with the aim of assessing magma–water interaction conditions, eruption energetics and genetic mechanisms. Feeder magmas spanned the whole SVD differentiation trend from trachybasalts–shoshonites to phonolites. From the ejected lithic fragments from aquifer rocks, the range of depth of magma–water explosive interaction is estimated to have been mostly at ∼400–600 m below ground level, with a single occurrence of surficial interaction in palustrine–lacustrine environment. In particular, the interaction with external water may have triggered the explosive behaviour of poorly differentiated magmas, whereas it may have acted only as a late controlling factor of the degree of fragmentation and eruption style for the most differentiated magma batches during low-flux ascent in an incipiently fragmented state. Crater sizes, ejecta volumes and ballistic data allow a reconstruction of the energy budget of SVD maar-forming eruptions. Erupted tephra volumes from either monogenetic or polygenetic maars ranged 0.004–0.07 km3 during individual maar-forming eruptions, with corresponding total magma thermal energies of 8 × 1015–4 × 1017 J. Based on energy partitioning and volume balance of erupted magmas and lithic fractions vs. crater holes, we consider the different contributions of explosive excavation of the substrate vs. subsidence in forming the SVD maar craters. Following available models based on crater sizes, highly variable fractions (5–50%) of the magma thermal energies would have been required for crater excavation. It appears that subsidence may have played a major role in some SVD maars characterised by low lithic contents, whilst substrate excavation became increasingly significant with increasing degrees of aquifer fragmentation.  相似文献   

17.
Peperites formed by mixing of magma and wet sediment are well exposed along Punta China, Baja California, Mexico, where two sills intrude a section of lava flows, limestones, and volcaniclastic rocks. Irregular lobes and dikes extend from the sills several meters into host sediments, including highly comminuted flow top breccias (lithic lapilli tuff breccias) and shelly micrites, whereas intrusive contacts with lava flows are sharp and planar. Where one sill intruded both coarse-grained volcaniclastic rock and fine-grained limestone, textural differences between the hosts produced strikingly different styles of peperite. Blocky masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host lithic lapilli tuff breccias; the blocks consequently underwent in situ fragmentation as they were rapidly quenched. The high degree of dispersion resulted from steam explosions as the magma enveloped pockets of water in the coarse-grained permeable host. Elutriation of fine-grained material from vertical pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous, immiscible fluids (fluidal peperite). Intrusion occurred behind a stable vapor film which entrained lime mud particles and carried them off grain by grain as magma advanced into the host. Thin-section-scale elutriation pipes formed. Microglobular peperite represents a frozen example of a fuel-coolant interaction (FCI) between basaltic magma and fluidized micrite host. The intimate intermixing of magma and host at the submillimeter level is attributed to fluid instabilities developed along the magma-vapor-host interface. Such intimate intermixing of magma and water-bearing fragmental debris is commonly a precursory step toward explosive hydrovolcanism.  相似文献   

18.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   

19.
Fine ash content of explosive eruptions   总被引:1,自引:0,他引:1  
In explosive eruptions, the mass proportion of ash that is aerodynamically fine enough to cause problems with jet aircraft or human lungs (< 30 to 60 μm in diameter) is in the range of a few percent to more than 50%. The proportions are higher for silicic explosive eruptions, probably because vesicle size in the pre-eruptive magma is smaller than those in mafic magmas. There is good evidence that pyroclastic flows produce high proportions of fine ash by communition and it is likely that this process also occurs inside volcanic conduits and would be most efficient when the magma fragmentation surface is well below the summit crater. Reconstructed total grain size distributions for several recent explosive eruptions indicate that basaltic eruptions have small proportions of very fine ash (~ 1 to 4%) while tephra generated during silicic eruptions contains large proportions (30 to > 50%).  相似文献   

20.
The May 22, 1915 eruptions of Lassen Peak involved a volcanic blast and the emplacement of three geographically and temporally distinct lahar deposits. The volcanic blast occurred when a Vulcanian explosion at the summit unroofed a shallow magma source, generating an eruption cloud that rose to an estimated height of 9 km above sea level. The blast cloud was probably caused by the collapse of a small portion of the eruption column; absence of a flank vent associated with these eruptions argues against it originating as an explosion that has been directed by vent geometry or location. The volcanic blast devasted 7 km2 of the northeast flank of the volcano, and emplaced a deposit of juvenile tephra and accidental lithic and mineral fragments. Decrease in blast deposit thickness and median grain size with increasing distance from the vent suggests that the blast cloud lost transport competence as it crossed the devastated area. Scanning electron microscope examination of pyroclasts from the blast deposit indicates that the blast cloud was a dry, turbulent suspension that emplaced a thin deposit which cooled rapidly after deposition. Lahar deposits were emplaced primarily in Lost Creek, with minor lahars flowing down gullies on the west, northwest and north flanks of the volcano. The initial lahar was apparently triggered early in the eruption when the blast cloud melted the residual snowpack as it moved down the northeast flank of the peak. The event that triggered the later lahars is enigmatic; the presence of approximately five times more juvenile dacite bombs on the surface of the later lahars suggests that they may have been triggered by a change in eruption style or dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号