首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
东海盆地中、新生代盆架结构与构造演化   总被引:6,自引:0,他引:6  
基于地貌、钻井、岩石测年和地震等资料,分析盆地地层分布、盆架结构、构造单元划分和裂陷迁移规律,结果表明东海盆地由台北坳陷、舟山隆起、浙东坳陷、钓鱼岛隆褶带和冲绳坳陷构成,是以新生代沉积为主、中生代沉积为辅的大型中、新生代叠合含油气盆地;古元古代变质岩系构成了盆地的基底。该盆地不仅是印度-太平洋前后相继的动力体系作用下形成的西太平洋沟-弧-盆构造体系域一部分,而且也是古亚洲洋动力体系作用下形成的古亚洲洋构造域和特提斯洋动力体系作用下形成的特提斯洋构造域一部分,晚侏罗世至早白垩世经历了构造体制转换,盆地格局发生重大变革,早白垩世以前主要受古亚洲-特提斯洋构造体制影响的强烈挤压造山和地壳增厚作用演变为早白垩世以来主要受太平洋构造体制控制的陆缘伸展裂陷和岩石圈减薄作用,经历侏罗纪古亚洲-特提斯构造体制大陆边缘拗陷和白垩纪以来太平洋构造体制弧后裂陷两大演化阶段。白垩纪以来太平洋构造体制的弧后裂陷演化阶段可细分为早白垩世至始新世裂陷期、渐新世至晚中新世拗陷期和中新世末至全新世裂陷期。  相似文献   

2.
中、新生代柴达木北缘的盆地类型与构造演化   总被引:13,自引:2,他引:13  
柴达木盆地是中国西部一个大型中新生代沉积盆地,柴北缘是侏罗系主要分布地区。中新生代柴达木盆地是在一个古老的稳定地块基础上形成发展的,根据中新生代西北地区周缘板块活动和构造演化特点,提出柴北缘中新生代经历了两个由伸展到挤压的构造运动旋回:从早中侏罗世到晚侏罗世是第一个旋回;从早白垩世到晚白垩世-第三纪和第四纪为第二个旋回。早中侏罗世是一种稳定大陆内弱伸展坳陷盆地,不具有典型的裂陷盆地特征。从渐新世开始,柴达木盆地才进入强烈挤压的山间盆地阶段,并决定了柴北缘现今的构造格局。中、新生代构造运动影响着柴北缘油气的生成和分布。  相似文献   

3.
二连盆地晚中生代以来构造-沉积演化与铀成矿作用   总被引:3,自引:0,他引:3  
通过分析二连盆地晚中生代以来的沉积构造演化,划分出早白垩世的大陆伸展断陷、断拗转换和晚白垩世以来弱挤压差异升降3个演化阶段。根据砂岩型铀矿成矿机理,认为断拗转换阶段沉积的灰色碎屑岩系是重要的找矿目的层,差异升降运动为砂岩型铀矿成矿提供了必要条件;分析了盆地中不同地段可能产出的铀矿化类型,初步归纳了铀的成矿模式。  相似文献   

4.
黑龙江东部盆地群中、新生代构造演化   总被引:2,自引:0,他引:2  
经最新的区域地质资料、岩石地层、砾石统计、同位素年龄以及野外构造观察等方面的研究认为:早白垩世黑龙江东部盆地群为统一的原型盆地,随着猴石沟组时期桦南隆起和密山隆起的隆升而被破坏.黑龙江东部盆地群中、新生代构造演化可分成6个阶段:①绥滨组一东荣组时期,黑龙江东部盆地群的北部处于坳陷阶段;②滴道组(裴德组)沉积时期,黑龙江东部进入伸展裂陷阶段,形成一系列孤立的小型断陷盆地;③城子河组(云山组)一穆棱组(珠山组)时期,黑龙江东部整体处于坳陷阶段,形成统一的原型盆地;④东山组时期,黑龙江东部盆地群进入伸展裂陷阶段;⑤猴石沟组时期,随着桦南隆起、密山隆起快速隆升,统一的东部盆地群遭到破坏,转向各个盆地的独立演化;⑥新生代,黑龙江东部各盆地独立演化,现今构造格局最后定位.  相似文献   

5.
羌塘盆地东部中生代沉积特征与构造演化   总被引:4,自引:0,他引:4       下载免费PDF全文
羌塘盆地东部基底由前石炭纪吉塘岩群组成,沉积盖层为晚古生代一白垩纪地层。其中,中生代海相地层在盆地内分布广泛,沉积体系多样,构造古地理转换频繁。中生代盆地包括南羌塘坳陷、唐古拉山隆起带、北羌塘坳陷等3个构造单元,内部又可以划分出不同时期多个次级凹陷和凸起。盆地的发展和演化既受南、北两侧板块结合带控制,又受盆地内部被分划性断裂带围限的各断块差异性活动约束,依次经历了晚三叠世前陆盆地阶段,“北羌塘”早-中侏罗世伸展裂陷盆地发育阶段,多玛侏罗纪-早白垩世早期被动大陆边缘陆表海盆地发展阶段、晚期前陆盆地阶段,晚白垩世南羌塘山间压陷盆地演化阶段。实质上,该盆地是不同时期原型盆地有序叠加而构成的大型叠复式盆地。  相似文献   

6.
银根-额济纳旗盆地是中新生代陆相盆地,前中生代岩石构成盆地基底。晚三叠世-侏罗纪进入了断陷盆地发育阶段,早白垩世为断陷盆地全面发展期,晚白垩世为坳陷期,其后表现为挤压抬升状态。发育中下侏罗统和下白垩统两个含油气系统,部分坳陷生、储、盖条件及其组合十分优越,勘探实践证实有过油气运聚,显示了盆地良好的油气勘探前景。目前需要抓住勘探重点,从有利区带和圈闭人手,注重湖相沉积演化的特点和岩浆岩对烃源岩演化及油气成藏的影响,寻找突破口,打开该区油气勘探的新局面。  相似文献   

7.
In order to better understand the Mesozoic tectonic evolution of Southeast China Block (SECB in short), this paper describes geological features of Mesozoic basins that are widely distributed in the SECB. The analyzed data are derived from a regional geological investigation on various Mesozoic basins and a recently compiled 1:1,500,000 geological map of Mesozoic–Cenozoic basins. Two types of basin are distinguished according to their tectonic settings, namely, the post-orogenic basin (Type I) and the intracontinental extensional basin (Type II); the latter includes the graben and the half-graben or faulted-depression basins. Our studies suggest that the formation of these basins connects with the evolution of geotectonics of the SECB. The post-orogenic basin (Type I) was formed in areas from the piedmont to the intraland during the interval from Late Triassic to Early Jurassic; and the formation of the intracontinental extensional basin (Type II) connects with an intracontinental crustal thinning setting in the Late Mesozoic. The graben basin was generated during the Middle Jurassic and is associated with a bimodal volcanic eruption; and the half-graben or faulted-depression basin, filled mainly by the rhyolite, tuff and sedimentary rocks during Early Cretaceous, is occupied by the Late Cretaceous–Paleogene red-colored terrestrial clastic rocks. We noticed that the modern outcrops of numerous granites and basins occur in a similar level, and the Mesozoic granitic bodies contact with the adjacent basins by large normal faults, suggesting that the modern landforms between granites and basins were yielded by the late crustal movement. The modern basin and range framework was settled down in the Cretaceous. Abundant sedimentary structures are found in the various basins, from that the deposited environments and paleo-currents are concluded; during the Late Triassic–Early Jurassic time, the source areas were situated to the north and northeast sides of the outcrop region. In this paper, we present the study results on one geological and geographical separating unit and two separating fault zones. The Wuyi orogenic belt is a Late Mesozoic paleo-geographically separating unit, the Ganjiang fault zone behaves as the western boundary of Early Cretaceous volcanic rocks, and the Zhenghe–Dapu fault zone separates the SE-China Coastal Late Mesozoic volcanic-sedimentary basins and the Wuyi orogenic belt. Finally, we discuss the geodynamic mechanisms forming various basins, proposing a three-stage model of the Mesozoic sedimentary evolution.  相似文献   

8.
扬子北缘黄陵地区晚中生代盆地演化及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
渠洪杰  康艳丽  崔建军 《地质科学》2014,49(4):1070-1092
扬子北缘黄陵地区古构造应力场于晚中生代经历发生了重大转变,是扬子板块与华北板块在三叠纪碰撞造山之后陆内构造变形的体现。由黄陵背斜周缘晚中生代盆地充填记录所反映出这一变革的起始时间为中侏罗世晚期。早侏罗世—中侏罗世早期,盆地内沉积了以桐竹园组为代表的河流—湖泊相岩层,由沉积碎屑成分和古水流统计所得出的物源区为北部的秦岭地区,黄陵背斜上部可能也接受了碎屑沉积;中侏罗世晚期—晚侏罗世,沉积中心发生了改变,表现为仅仅在黄陵背斜西侧的秭归盆地内有所保存,沉积环境以曲流河到辫状河流和三角洲为主,物源区则局限于黄陵背斜;早白垩世初期,周坪盆地和宜昌盆地为沉积中心,近缘冲积扇和辫状河流体系占据主体,物源区依然为黄陵地区,两盆地在黄陵背斜南缘可能相连,黄陵背斜上部的原下侏罗统被剥蚀;早白垩世晚期—晚白垩世,远安盆地逐渐发育,盆地西缘为冲积扇—辫状河流体系,中、 东部则以曲流河—湖泊沉积环境为主体,并间有干旱沙漠环境。原型盆地再造结果显示,早侏罗世—中侏罗世早期盆地展布具有近东西向特点,古地貌总体呈现出北部为山脉、 南部为盆地的格局;中侏罗世晚期以来,盆地呈近南北向,黄陵背斜逐渐形成山脉,盆地位于其东西两侧。两期盆地沉积特征反映了扬子北缘古构造应力场由近南北向转变为近东西向的过程。  相似文献   

9.
庐枞盆地中生代火山岩的起源、演化及形成背景   总被引:22,自引:32,他引:22  
庐枞中生代火山盆地位于长江中下游断陷带内,地处扬子板块的北缘.庐枞盆地内火山岩分布广泛,为一套包括粗玄岩-玄武粗安岩-粗面岩的富碱橄榄安粗岩系,划分为龙门院、砖桥、双庙和浮山等四个喷溢堆积旋回.盆地内火山岩浆活动起止时间约为136~124Ma,均为早白垩世火山活动.地球化学特征显示,庐枞盆地4个旋回火山岩岩浆具有同源关系,源于性质接近于EMI型富集地幔的交代地幔;各旋回火山岩岩浆演化过程中存在结晶分异作用,同时还受到了一定的地壳物质混染;火山岩由早到晚(龙门院旋回→砖桥旋回→双庙旋回→浮山旋回)具有向高钾、负Eu异常增强、结晶分异作用增强、岩浆分异程度增高方向的演化规律;庐枞盆地早白垩世存在由挤压-拉张过渡背景转为典型张性背景的构造转换,转换时间约为130.5Ma左右,龙门院、砖桥旋回火山岩形成于挤压-啦张过渡的构造背景,双庙、浮山旋回火山岩形成于典型的拉张构造背景.  相似文献   

10.
王明健  潘军  高红芳  黄龙  李霞 《地学前缘》2022,29(2):294-302
目前的勘探成果表明,南海北部到东海南部的广阔海域普遍发育中生代地层,但是除了在台西南盆地发现工业油气藏之外,其他地区的中生界尚未有大的勘探突破。本次研究将中生代南海北部—东海南部作为一个整体,开展大地构造背景分析,厘清各构造时期盆地的性质及其形成演化机制,探讨油气资源潜力。结果表明:南海北部—东海南部从晚三叠世到白垩纪整体为一个大型盆地,盆地的演化受其周围板块相互运动所控制;晚三叠世(T3)主要受特提斯构造域控制,发育被动陆缘边缘海沉积盆地;从早侏罗世(J1)到早白垩世均受古太平洋板块(伊泽奈崎板块)向欧亚板块俯冲机制的控制,其中早—中侏罗世(J1-2)发育弧前坳陷盆地,晚侏罗—早白垩世(J3—K1)盆地性质为弧后断陷盆地;晚白垩世(K2)受太平洋板块、欧亚板块和印度板块的联合控制,性质依然为弧后断陷盆地,与前期相比,裂陷强度加大;海水由东南方向侵入,地层垂向上由海相向陆相逐渐过渡,由东南向西北和东北方向,水体逐渐变浅,亦由海相向陆相逐渐演变;中生界在南海北部潮汕坳陷等地区发育深海相和海湾相泥岩,在东海南部基隆坳陷也发育良好的海湾相泥岩,生烃潜力大,具有形成大型油气藏的物质基础和地质条件,勘探潜力巨大。本次研究结果可以为南海北部—东海南部中生界的油气资源勘探提供依据。  相似文献   

11.
Messinian evaporites, which resulted from the salinity crisis during the final closure of the Mediterranean Sea, are exposed in SE Turkey. These evaporites formed in two isolated sub-basins, Iskenderun-Arsuz (IA) and Hatay-Samanda? (HS), which belong to different depositional configurations and tectonic structures. The Neogene fill of these sub-basins consists of a thick sedimentary succession that started with Early Miocene terrestrial clastics, followed by reefs (Middle Miocene) and shallow water siliciclastics (Tortonian - Early to Late Miocene) and finally Messinian evaporates. These sub-basins accumulated in a diverse range of depositional environments from very shallow to deeper water. Evaporite facies in the IA sub-basin consist of sabkhas, saline lagoons and ponds. They are mainly represented by chemical deposits such as scattered gypsum nodules and balls, nodular bedded gypsum, laminated gypsum (Type-A) and selenites (Type-S1). Evaporites in the HS sub-basin mainly consist of detrital gypsum composed of gypsum laminae (Type-B, C), gypsum arenite-rudites and deeper water selenites (≤ 20 m), and resedimented selenites (Type-S2), which were deposited on a sulfate platform with a slope-basin transitional zone. Secondary gypsum with alabastrine and porphyroblastic textures as well as satin spar veins is commonly associated with the sabkha-type evaporites of the IA sub-basin. Deeper-water clastic evaporites of the HS sub-basin have generally remained as primary gypsum or have only been slightly affected by diagenetic alterations. The isotope values (87/86Sr; δ18O SMOW; and δ34S CDT) from the different kinds of gypsum lithofacies of the sub-basin are similar to those of the Messinian evaporites in other peri-Mediterranean basins, indicating an origin from marine water without external or basinal contributions.The Messinian evaporites examined in this paper are overlain by Early Pliocene (Zanclean) deposits composed of shallow- and deep-water siliciclastics and carbonates with local intercalations of Lago-Mare-type strata. Throughout the Messinian evaporitic stage, the IA sub-basin was mainly comprised of shallow water evaporites, while the HS sub-basin underwent deepening related to regional tectonics induced by the Dead Sea Fault during the construction of the Hatay Graben.  相似文献   

12.
焉耆盆地中生界层序地层和沉积体系分析   总被引:11,自引:1,他引:11  
利用层序地层学原理和方法,建立了焉耆盆地中生界层序地层格架,将其划分为4个层序,继而分析了各个层序的地层特征、层序演化及各个体系域的沉积体系展布。研究表明,焉耆盆地中生代存在南北两大物源体系,盆地总体上以河流-湖泊沼泽相的浅水沉积为主,湖泊水体深度不大且分布范围有限;层序Ⅲ的水进体系域是湖盆发育的鼎盛时期,构成了本区良好的盖层;通过层序构成分析,探讨了隐蔽圈闭发育的有利层位及区带。  相似文献   

13.
The south-eastern part of the basement of the Pannonian Basin is made up of Variscan crystalline complexes and early Mesozoic formations showing striking affinity with the corresponding formations in the southern margin of the European Plate. This large composite structural unit, which is actually an exotic terrane of European Plate origin, has been named the Tisza Mega-unit. Based upon relevant data of the pre-Tertiary basement of southern Hungary the reconstruction of the position of the Tisza Terrane in the early Alpine evolutionary stages, the process of its separation and break-off from the European Plate, and results of its Eo-Alpine deformations are summarised in the present paper. In the Variscan and early Alpine evolutionary stages the area of the later Tisza Mega-unit was located at the margin of the European Plate. During Variscan orogeny terrane accretion led to intensive deformation and metamorphism in this belt. This was followed by transpressional tectonics and the development of molasse basins in the late and post-Variscan stages, and passive margin evolution after the Neotethys opening in the Middle Triassic. The separation of the Tisza Mega-unit began with incipient continental rifting along the axis of the later Ligurian–Penninic–Vahic oceanic branch in the Late Triassic. The end of terrigenous material deposition in the most external zones, and a coeval change in fossil assemblage, point to the separation of the Tisza Block from the European Plate in the Early Bathonian. Significant rotation of the Tisza Mega-unit and coeval paroxysm of alkaline rift-type basalt volcanism took place in the Early Cretaceous. In the mid-Cretaceous, due to the northward motion of the Adria Block and the related closure of the westernmost Neotethys basin, the extensional regime changed to a compressional one, leading to onset of the nappe stacking and low-grade regional metamorphism within the Tisza microplate. In the foreland of the nappe systems flexural basins came into existence that are characterised by flysch-type sedimentation. In the Early Tertiary the north-eastward motion of the Alcapa and Tisza + Dacia Blocks led to the formation of the present-day heterogeneous basement of the Pannonian Basin.  相似文献   

14.
海南岛中生代红色盆地地层   总被引:1,自引:1,他引:1  
符国祥 《地层学杂志》1995,19(2):115-121,63
对海南岛中生代红色盆地中8条地层剖面进行了详细研究,以火山岩作标志层,划分为南美组、洪帽组/临高组、报万组,统称鹿母湾群。根据生物总貌和同位素年龄,定其时代为晚侏罗世到晚白垩世。  相似文献   

15.
楚雄中生代前陆盆地的构造沉降史研究   总被引:13,自引:1,他引:13       下载免费PDF全文
云南楚雄盆地位于扬子陆块的西南边缘,为一典型的中生代周缘前陆盆地。盆地演化阶段明显,晚三叠世为前陆早期复理石沉积,侏罗纪则为前陆晚期磨拉石沉积。对盆地构造沉降史研究后笔者认为:①晚三叠世复理石沉积盆地构造沉降幅度巨大,沉降与沉积中心位于盆地最西部,紧邻古哀牢山造山带,沉积体呈楔形展布;②侏罗纪磨拉石沉积盆地构造沉降和沉积中心以及前缘隆起向内陆方向迁移明显;③中生代构造快速沉降的沉积体的楔形展布表明盆地具有前陆岩石圈挠曲成因特征;④盆地的高沉积速率受构造和超补偿沉积作用的共同控制。  相似文献   

16.
西藏羌塘盆地中生界烃源岩探讨   总被引:4,自引:4,他引:4  
羌塘盆地位于青藏高原中北部全球油气产量最高、储量最丰的特提斯构造域中段,是一复合对称型前陆盆地,具有广泛的中生界海相沉积和中国最年轻的海相地层,沉积厚度可达万米,其中侏罗系占一半以上。盆地经历了晚古生代大陆边缘沉积阶段、三叠纪陆间裂谷阶段、侏罗纪大陆边缘沉积阶段和侏罗纪末班公湖—怒江缝合带闭合以来的构造反转挤压一长期剥蚀阶段。羌塘盆地中生代具有广泛分布且发育良好的烃源岩,烃源岩厚度大,最厚处可达3000m以上,其中上三叠统的肖茶卡组、中侏罗统布曲组和夏里组有机质类型好,丰度高,成熟度从成熟到过成熟均有分布。埋藏较好,其生油量巨大,是盆地油气的主要来源之一。  相似文献   

17.
Detailed structural investigations were carried out in the Pevek area in order to verify the tectonic evolution of the Mesozoic thrust and fold belt in Chukotka. South-vergent F1 folds in Triassic rocks were proved to be the earliest structures formed during the first deformation stage DI. These structures were deformed by north-vergent folds F2 that were formed during the second deformation stage DII. North-vergent folds are the main structures of the Jurassic–Lower Cretaceous complex. The fold structures of the first two stages are deformed by shear folds F3 finishing the stage DII. All these structures are deformed by submeridionally trending normal faults referred to the deformation stage DIII.  相似文献   

18.
Horizontal extension of a previously thickened crust could be the principal mechanism that caused the development of widespread extensional basins throughout the North China block (Hua-Bei region) during the Mesozoic. We develop here a regional tectonic model for the evolution of the lithosphere in the North China block, based on thin sheet models of lithospheric deformation, with numerical solutions obtained using the finite element method. The tectonic evolution of this region is defined conceptually by two stages in our simplified tectonic model: the first stage is dominated by N–S shortening, and the second by E–W extension. We associate the N–S shortening with the Triassic continental collision between the North and South China blocks, assuming that the Tan-Lu Fault system defines the eastern boundary of the North China block. The late Mesozoic E–W extension that created the Mesozoic basin systems requires a change in the regional stress state that could have been triggered by either or both of the following factors: First, gravitational instability of the lithosphere triggered by crustal convergence might have removed the lower layers of the thickened mantle lithosphere and thus caused a rapid increase in the local gravitational potential energy of the lithosphere. Secondly, a change to the constraining stress on the eastern boundary of the North China block, that might have been caused by roll-back of the subducting Pacific slab, could have reduced the E–W horizontal stress enough to activate extension. Our simulations show that widespread thickening of the North China block by as much as 50% can be explained by the collision with South China in the Triassic and Jurassic. If convergence then ceases, E–W extension can occur in the model if the eastern boundary of the region can move outwards. We find that such extension may occur, restoring crustal thickness of order 30 km within a period of 50 Myr or less, if the depth-averaged constitutive relation of the lithosphere is Newtonian, and if the Argand number (the ratio of buoyancy-derived stress to viscous stress) is greater than about 4. Widespread convective thinning of the lithosphere is not required in order to drive the extension with these parameters. If, however, the lithospheric viscosity is non-Newtonian (with strain-rate proportional to the third power of stress) the extensional phase would not occur in a geologically plausible time unless the Argand number were significantly increased by a lithospheric thinning event that was triggered by crustal thickening ratios as low as 1.5.  相似文献   

19.
辽西地区中生代盆地构造演化   总被引:7,自引:1,他引:7  
杨庚  郭华  刘立 《铀矿地质》2001,17(6):332-340
辽西地区为华北地台北缘阴山-燕山造山带的东延部分,中生代发育火山-碎屑岩沉积盆地。盆地地质分析表明,该区在早白垩世早期之前发育的沉积盆地为挤压型盆地,早白垩世中期以后属伸展断陷盆地。根据沉积-构造分析,该区中生代盆地构造演化可划分为5个构造演化阶段;(1)早三叠世--早侏罗世;(2)早侏罗世-中侏罗世;(3)中侏罗世-晚侏罗世;(4)早白垩世早期;(5)早白垩世中期-晚白垩世。  相似文献   

20.
中生代多向挤压构造作用与四川盆地的形成和改造   总被引:5,自引:0,他引:5       下载免费PDF全文
远离活动板块边缘的四川盆地以其周缘复杂分布的褶皱构造带而著称,这些构造带的成因及其大地构造背景一直是华南大地构造研究的焦点之一。本文基于区域构造编图、褶皱构造样式和叠加变形分析,论述了四川盆地及其周缘中生代挤压变形特征及其定型时代,确定了重要构造事件及其产生的构造样式。研究显示,四川盆地及其周缘地带中生代经历了3个重大构造事件,每个构造事件产生的构造形迹在空间上发生复合和联合,造就了四川盆地及其周缘复杂的构造组合样式。中晚三叠世碰撞造山事件(印支运动)在扬子地区形成近W-E向褶皱构造,扬子地块西缘伴随着松潘—甘孜褶皱造山带的形成,发育了龙门山—锦屏山逆冲-推覆构造带及川滇前陆盆地,奠定了川—渝—黔—滇大型沉积盆地,构成四川盆地的原形。中晚侏罗世时期(燕山早幕),东亚构造体制发生重大变革,来自北部、东部、西部和南部的板块多向汇聚导致了大陆多向汇聚构造体系的形成和发展,其中秦岭造山带的再生活动导致南部米仓山—大巴山前陆构造带的形成和发展;来自太平洋板块向西推挤,导致了川东地区NW向突出的弧型构造和川南华蓥山帚状构造的形成;羌塘地块的向东侧向挤出,在扬子地块西北缘发生褶皱逆冲变形(龙门山—锦屏山构造带)。这期多向挤压事件强烈改造了四川T3-J1-2原形盆地,周缘褶皱构造带基本定型。早白垩世晚期的挤压事件(燕山晚幕)进一步改造了四川盆地,NW-SE向构造得到加强。除了西缘以外,四川盆地其他周缘褶皱构造带主体定型于晚侏罗世的陆内造山作用阶段,是扬子克拉通周边造山带在周邻板块多向汇聚作用下引发的再生复活的结果,成为中国东部陆内汇聚构造体系的重要组成部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号