首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Redistribution of ground‐level rainfall and interception loss by an isolated Quercus ilex tree were measured over 2 years in a Mediterranean oak savannah. Stemflow, meteorological variables and sap flow were also monitored. Rainfall at ground level was measured by a set of rain‐gauges located in a radial layout centred on the tree trunk and extending beyond the crown limits. Interception loss was computed as the difference between the volume of rainwater that would reach the ground in the absence of the tree and the volume of water that actually fell on the ground sampling area (stemflow included). This procedure provided correct interception loss estimates, irrespective of rainfall inclination. Results have shown a clear non‐random spatial distribution of ground‐level rainfall, with rainwater concentrations upwind beneath the crown and rain‐shadows downwind. Interception loss amounted to 22% of gross rainfall, per unit of crown‐projected area. Stand interception loss, per unit of ground area, was only 8% of gross rainfall and 28% of tree evapotranspiration. These values reflect the low crown cover fraction of the stand (0·39) and the specific features of the Mediterranean rainfall regime (predominantly with few large storms). Nevertheless, it still is an important component of the water balance of these Mediterranean ecosystems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

6.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

7.
Rainfall interception loss plays an important role in ecohydrological processes in dryland shrub ecosystems, but its drivers still remain poorly understood. In this study, a statistical model was developed to simulate interception loss based on the mass balance measurements arising from the partitioning of rainfall in 2 dominant xerophytic shrub (Hippophae rhamnoides and Spiraea pubescens) communities in the Loess Plateau. We measured throughfall and stemflow in the field under natural rainfall, calculated the canopy storage capacity in the laboratory, and identified key factors controlling these components for the 2 shrubs. We quantified and scaled up the stemflow and the canopy storage capacity measurements from the branches and/or leaves to stand level. The average interception loss, throughfall, and stemflow fluxes account for 24.9%, 72.2%, and 2.9% of the gross rainfall for Hrhamnoides, and 19.2%, 70.7%, and 10.1% for Spubescens, respectively. Throughfall increased with increasing rainfall for both shrubs; however, it was only correlated with the leaf area index for Spubescens. For stemflow measured from individual branches, we found that the rainfall amount and basal diameter are the best predictors for Hrhamnoides, whereas rainfall amount and branch biomass appear to be the best predictors for Spubescens. At the stand level, stemflow production is affected by the rainfall amount for Hrhamnoides, and it is affected by both the rainfall amount and the leaf area index for Spubescens. The canopy storage capacity of Hrhamnoides (1.07–1.28 mm) was larger than Spubescens (0.88–1.07 mm), and it is mainly determined by the branches and stems of Hrhamnoides and the leaves of Spubescens. The differences in interception loss between the 2 shrub stands are mainly attributed to different canopy structures that induced differences in stemflow production and canopy storage. We evaluated the effects of canopy structure on rainfall interception loss, and our developed model provides a better understanding of the effects of the canopy structure on the water cycles in dryland shrub ecosystems.  相似文献   

8.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
CHANGYUAN TANG 《水文研究》1996,10(11):1427-1434
Interception and recharge processes beneath a Pinus elliotii forest were considered in an integrated study. In the study area, annual rainfall was divided into throughfall (74.45%), stemflow (9.37%) and interception (16.28%). Throughfall and stemflow infiltrate into the soil in different ways. The results show that trees can affect the recharge characteristics by providing throughfall as a non-point source and stemflow as a point source, and also through their influence on infiltration processes by making the hydraulic conductivity of soil heterogeneous. In the root zone there was a divergent zero flux plane recharged by macropore flow during heavy rain and a convergent zero flux plane caused by transpiration during dry periods.  相似文献   

10.
A. Iroum  A. Huber 《水文研究》2002,16(12):2347-2361
For a 26 month period, between 1 February 1998 and 31 March 2000, total precipitation, throughfall, stemflow and interception losses were measured for two different forest covers, one a managed broadleaved native forest and the other a Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) plantation. Regressions between throughfall and stemflow and total precipitation (P) for individual storms and forest covers were computed and also for values of interception losses (expressed as a percentage of P) and P for each forest cover and period of development of the forest vegetation. Results obtained demonstrate the importance of forest canopies in rainfall distribution processes and for the availability of water resources. Also, that these forests generate particular interception patterns not strongly associated with the variation in crown cover throughout the year. These patterns are more closely related to the characteristics of rainfall and meteorological conditions during the growing and dormant periods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Large‐scale exotic pine plantations have been developed for timber production in subtropical Australia. Few studies investigate the spatial variability of both throughfall and stemflow in such managed pine plantations despite their acknowledged effects on the heterogeneity of hydrological and biochemical processes of forested ecosystems. To examine the spatial variability of rainfall under a 12‐year‐old pine plantation in a subtropical coastal area of Australia, we observed gross rainfall, throughfall and stemflow over a 1‐year period. Our results show that the spatial variability of gross rainfall within a 50 m × 50 m plot is minimal. Throughfall is significantly different among three tree zones (midway between rows, west and east side of trunks), particularly for rainfall <50 mm, with the highest throughfall on the east side of the tree trunks (sum = 85% of gross rainfall) and the lowest in the midway between tree rows (sum = 68% of gross rainfall). These spatial patterns persist among 84% of recorded rainfall events. Spatial variability and time stability of throughfall are better explained by canopy interception of the inclined rainfall resulting from the prevailing easterly wind direction throughout the experiment. The annual stemflow is different among individual sample trees, which is mainly ascribed to the difference in tree size (e.g. projected canopy area and stem diameter). The outcomes of this study would help future investigators better design appropriate sampling strategies in these pine plantations under similar climate conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

13.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

15.
This article presents a comprehensive study of canopy interception in six rainforests in Australia's Wet Tropics for periods ranging between 2 and 3·5 years. Measurements of rainfall, throughfall, stemflow and cloud interception were made at sites characterized by different forest types, canopy structure, altitude, rainfall and exposure to prevailing winds. Throughfall at these sites ranged between 64 and 83% of total precipitation inputs, while stemflow ranged between 2 and 11%. At sites higher than 1000 m, cloud interception was found to contribute up to 66% of the monthly water input to the forest, more than twice the rainfall at these times. Over the entire study period, cloud interception accounted for between 4 and 30% of total precipitation inputs, and was related more to the exposure of sites to prevailing winds than to altitudinal differences alone. Over the duration of the study period, interception losses ranged between 22 and 29% of total water input (rainfall and cloud interception) at all sites except the highest altitude site on Bellenden Ker, where interception was 6% of total water input. This smaller interception loss was the result of extremely high rainfall, prolonged immersion in cloud and a sparser canopy. On a monthly basis, interception losses from the six sites varied between 10 and 88% of rainfall. All sites had much higher interception losses during the dry season than in the wet season because of the differences in storm size and rainfall intensity. The link between rainfall conditions and interception losses has important implications for how evaporative losses from forests may respond to altered rainfall regimes under climate change and/or large‐scale atmospheric circulation variations such as El Niño. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

17.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

19.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
To consolidate knowledge of some aspects of the partitioning of incident rainfall into throughfall, stemflow and interception loss, a study was made in a typical cocoa (Theobroma cacao Lour.) plantation in south-east Bahia, Brazil. The samples were collected, on a per shower basis, from locations at different levels in the canopy over a period of two and a half years. During the period studied, of the amount of incident rainfall reaching the cocoa plantation, on average 16% was retained by shelter trees, 19% by cocoa trees and 9% by the ground litter. Losses due to interception caused some variations and were mainly regulated by temporal variations and by the amount and intensity of rainfall in the plantation. The amount of rainfall intercepted, as determined in this study, is comparable with other tropical stands, but important differences do exist and are believed to be influenced by the previous level of moisture availability within the cocoa plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号