首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of the temperature-humidity cospectrum and correlation spectrum were made with a cold platinum wire and a Ly- hygrometer at 3.7 and 10 m above vegetated surfaces during unstable atmospheric conditions. It was found theoretically that a separation between the temperature and humidity sensors causes a drop-off of the correlation spectrum at wavenumbers > 0.3 –1. The observed drop-off follows the theoretical one reasonably well. Measurements made with the temperature sensor placed in the center of the Ly- gap reveal a % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae8NKby% kaaa!37B5!\[f\]–5/3 dependence of the temperature-humidity cospectrum in the inertial subrange up to frequencies of 20 Hz. The drop-off at higher frequenties is thought to be caused by limitations inherent to the Ly- humidiometer.  相似文献   

2.
Review of some basic characteristics of the atmospheric surface layer   总被引:15,自引:6,他引:9  
Some of the fundamental issues of surface layer meteorology are critically reviewed. For the von Karman constant (k), values covering the range from 0.32 to 0.65 have been reported. Most of the data are, however, found in a rather narrow range between 0.39 and 0.41. Plotting all available atmospheric data against the so-called roughness Reynolds number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabw% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWG1bWaaSbaaSqaaiaa% cQcaaeqaaOGaamOEamaaBaaaleaacaaIWaaabeaakiaac+cacqaH9o% GBaaa!3FD0!\[{\rm{Re}}_{\rm{0}} = u_* z_0 /\nu \] or against the surface Rossby number, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaab+% gadaWgaaWcbaGaaeimaaqabaGccqGH9aqpcaWGhbGaai4laiaadAga% caWG6bWaaSbaaSqaaiaaicdaaeqaaaaa!3DF1!\[{\rm{Ro}}_{\rm{0}} = G/fz_0 \] gives no clear indication of systematic trend. It is concluded that k is indeed constant in atmospheric surface-layer flow and that its value is the same as that found for laboratory flows, i.e. about 0.40.Various published formulae for non-dimensional wind and temperature profiles, m and h respectively, are compared after adjusting the fluxes so as to give % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2% da9iaaicdacaGGUaGaaGinaiaaicdaaaa!3AC6!\[k = 0.40\] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaii% GacqWFgpGzdaWgaaWcbaGaamiAaaqabaGccaGGVaGae8NXdy2aaSba% aSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaadQhaca% GGVaGaamitaiabg2da9iaaicdaaeqaaOGaeyypa0JaaGimaiaac6ca% caaI5aGaaGynaaaa!4655!\[\left( {\phi _h /\phi _m } \right)_{z/L = 0} = 0.95\]. It is found that for % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWabeaaca% WG6bGaai4laiaadYeaaiaawEa7caGLiWoacqGHKjYOcaaIWaGaaiOl% aiaaiwdaaaa!3F72!\[\left| {z/L} \right| \le 0.5\] the various formulae agree to within 10–20%. For unstable stratification the various formulations for h continue to agree within this degree of accuracy up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaac+% cacaWGmbGaeyisISRaeyOeI0IaaGOmaaaa!3BC9!\[z/L \approx - 2\]. For m in very unstable conditions results are still conflicting. Several recent data sets agree that for unstable stratification % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabM% gacqGHijYUcaaIXaGaaiOlaiaaiwdacaWG6bGaai4laiaadYeaaaa!3E0D!\[{\rm{Ri}} \approx 1.5z/L\] up to at least % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam% OEaiaac+cacaWGmbGaeyypa0JaaGimaiaac6cacaaI1aaaaa!3C8D!\[ - z/L = 0.5\] and possibly well beyond.For the Kolmogorov streamwise inertial subrange constant, u , it is concluded from an extensive data set that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhaaeqaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaGOm% aiabgglaXkaaicdacaGGUaGaaGimaiaaikdaaaa!4178!\[\alpha _u = 0.52 \pm 0.02\]. The corresponding constant for temperature is much more uncertain, its most probable value being, however, about 0.80, which is also the most likely value for the corresponding constant for humidity.The turbulence kinetic energy budget is reviewed. It is concluded that different data sets give conflicting results in important respects, particularly so in neutral conditions.It is demonstrated that the inertial-subrange method can give quite accurate estimates of the fluxes of momentum, sensible heat and water vapour from high frequency measurements of wind, temperature and specific humidity alone, provided apparent values of the corresponding Kolmogorov constants are used. For temperature and humidity, the corresponding values turn out to be equal to the true constants, so % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS% baaSqaaiaadgeaaeqaaOGaeyisISRaeqOSdiMaeyisISRaaGimaiaa% c6cacaaI4aGaaGimaaaa!4074!\[\beta _A \approx \beta \approx 0.80\]. For momentum, however, the apparent constant % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS% baaSqaaiaadwhacaWGbbaabeaakiabgIKi7kaaicdacaGGUaGaaGOn% aiaaicdaaaa!3E18!\[\alpha _{uA} \approx 0.60\].Based on an invited paper presented at the EGS Workshop Instrumental and Methodical Problems of Land Surface Flux Measurements, Grenoble 22–26 April, 1994.  相似文献   

3.
Absolute quantum yields for the formation of OH radicals in the laser photolysis of aqueous solutions of NO3 -, NO2 - and H2O2 at 308 and 351 nm and as a function of pH and temperature have been measured. A scavenging technique involving the reaction between OH and SCN- ions and the time resolved detection by visible absorption of the (SCN)2 - radical ion was used to determine the absolute OH yields. The following results were obtained:
  1. NO 3 - -photolysis:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIWa% GaaGioaGGaaiab-bcaGiaab6gacaqGTbGaaeOoaiab-bcaGiabfA6a% gnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaaiikaiaaikdacaaI5a% GaaGioaiab-bcaGiab-P5aljaacMcacqGH9aqpcqWFGaaicqWFWaam% cqWFUaGlcqWFWaamcqWFXaqmcqWF3aWncqWFGaaicqGHXcqScqWFGa% aicqWFWaamcqWFUaGlcqWFWaamcqWFWaamcqWFZaWmcqWFGaaicaqG% MbGaae4BaiaabkhacaqGGaGaaeinaiaabccacqGHKjYOcaqGGaGaam% iCaiaabIeacaqGGaGaeyizImQaaeiiaiaabMdaaeaacqWFGaaicqWF% GaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicq% WFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqqHMoGr% daWgaaWcbaGae83Nd8Kae83LdGeabeaakiaacIcacaWGubGaaiykai% abg2da9iabfA6agnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaaiik% aiaaikdacaaI5aGaaGioaiab-bcaGiab-P5aljaacMcacqWFGaaica% qGLbGaaeiEaiaabchacaqGGaWaamWaaeaacaqGOaGaaeymaiaabIda% caqGWaGaaeimaiaabccacqGHXcqScaaI0aGaaGioaiaaicdacaqGPa% GaaeikamaalaaabaGaaeymaaqaaiaabkdacaqG5aGaaeioaaaacaqG% GaGaeyOeI0IaaeiiamaalaaabaGaaeymaaqaaiaadsfaaaGaaeykaa% Gaay5waiaaw2faaiaac6caaaaa!9673!\[\begin{gathered}08 {\text{nm:}} \Phi _{{\rm O}{\rm H}} (298 {\rm K}) = 0.017 \pm 0.003 {\text{for 4 }} \leqslant {\text{ }}p{\text{H }} \leqslant {\text{ 9}} \hfill \\\Phi _{{\rm O}{\rm H}} (T) = \Phi _{{\rm O}{\rm H}} (298 {\rm K}) {\text{exp }}\left[ {{\text{(1800 }} \pm 480{\text{)(}}\frac{{\text{1}}}{{{\text{298}}}}{\text{ }} - {\text{ }}\frac{{\text{1}}}{T}{\text{)}}} \right]. \hfill \\\end{gathered}\] Selected experiments at 351 nm indicate that these results are essentially unchanged.
  2. NO 2 - -photolysis:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIWa% GaaGioaGGaaiab-bcaGiaab6gacaqGTbGaaeOoaiab-bcaGiabfA6a% gnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaaiikaiaaikdacaaI5a% GaaGioaiab-bcaGiab-P5aljaacMcacqGH9aqpcqWFGaaicqWFOaak% cqWFWaamcqWFUaGlcqWFWaamcqWFXaqmcqWF3aWncqWFGaaicqGHXc% qScqWFGaaicqWFWaamcqWFUaGlcqWFWaamcqWFWaamcqWFXaqmcqWF% PaqkcqWFGaaicaqGMbGaae4BaiaabkhacaqGGaGaaeinaiaabccacq% GHKjYOcaqGGaGaamiCaiaabIeacaqGGaGaeyizImQaaeiiaiaabMda% caqGSaaabaGae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8% hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIa% e8hiaaIae8hiaaIaeuOPdy0aaSbaaSqaaiab-95apjab-D5aibqaba% GccaGGOaGaamivaiaacMcacqGH9aqpcqqHMoGrdaWgaaWcbaGae83N% d8Kae83LdGeabeaakiaacIcacaaIYaGaaGyoaiaaiIdacqWFGaaicq% WFAoWscaGGPaGae8hiaaIaaeyzaiaabIhacaqGWbGaaeiiamaadmaa% baGaaeikaiaabgdacaqG1aGaaeOnaiaabcdacaqGGaGaeyySaeRaae% iiaiaabodacaqG2aGaaeimaiaabMcacaqGOaWaaSaaaeaacaqGXaaa% baGaaeOmaiaabMdacaqG4aaaaiaabccacqGHsislcaqGGaWaaSaaae% aacaqGXaaabaGaamivaaaacaqGPaaacaGLBbGaayzxaaGaaiilaaqa% aiaaiodacaaI1aGaaGymaiaabccacaqGUbGaaeyBaiaabQdacqWFGa% aicqqHMoGrdaWgaaWcbaGae83Nd8Kae83LdGeabeaakiaacIcacaaI% YaGaaGyoaiaaiIdacqWFGaaicqWFAoWscaGGPaGaeyypa0Jae8hiaa% Iae8hkaGIae8hmaaJae8Nla4Iae8hmaaJae8hnaqJae8NnayJae8hi% aaIaeyySaeRae8hiaaIae8hmaaJae8Nla4Iae8hmaaJae8hmaaJae8% xoaKJae8xkaKIae8hiaaIaaeOzaiaab+gacaqGYbGaaeiiaiaabsda% caqGGaGaeyizImQaaeiiaiaadchacaqGibGaaeiiaiaab2dacaqGGa% GaaeioaiaabYcaaeaacqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWF% GaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicqWFGaaicq% WFGaaicqWFGaaicqWFGaaicqqHMoGrdaWgaaWcbaGae83Nd8Kae83L% dGeabeaakiaacIcacaWGubGaaiykaiabg2da9iabfA6agnaaBaaale% aacqWFFoWtcqWFxoasaeqaaOGaaiikaiaaikdacaaI5aGaaGioaiab% -bcaGiab-P5aljaacMcacqWFGaaicaqGLbGaaeiEaiaabchacaqGGa% WaamWaaeaacaqGOaGaaeymaiaabIdacaqGWaGaaeimaiaabccacqGH% XcqScaqGGaGaaeinaiaabcdacaqGWaGaaeykaiaabIcadaWcaaqaai% aabgdaaeaacaqGYaGaaeyoaiaabIdaaaGaaeiiaiabgkHiTiaabcca% daWcaaqaaiaabgdaaeaacaWGubaaaiaabMcaaiaawUfacaGLDbaaca% GGUaaaaaa!FC61!\[\begin{gathered}08 {\text{nm:}} \Phi _{{\rm O}{\rm H}} (298 {\rm K}) = (0.017 \pm 0.001) {\text{for 4 }} \leqslant {\text{ }}p{\text{H }} \leqslant {\text{ 9,}} \hfill \\\Phi _{{\rm O}{\rm H}} (T) = \Phi _{{\rm O}{\rm H}} (298 {\rm K}) {\text{exp }}\left[ {{\text{(1560 }} \pm {\text{ 360)(}}\frac{{\text{1}}}{{{\text{298}}}}{\text{ }} - {\text{ }}\frac{{\text{1}}}{T}{\text{)}}} \right], \hfill \\351{\text{ nm:}} \Phi _{{\rm O}{\rm H}} (298 {\rm K}) = (0.046 \pm 0.009) {\text{for 4 }} \leqslant {\text{ }}p{\text{H = 8,}} \hfill \\\Phi _{{\rm O}{\rm H}} (T) = \Phi _{{\rm O}{\rm H}} (298 {\rm K}) {\text{exp }}\left[ {{\text{(1800 }} \pm {\text{ 400)(}}\frac{{\text{1}}}{{{\text{298}}}}{\text{ }} - {\text{ }}\frac{{\text{1}}}{T}{\text{)}}} \right]. \hfill \\\end{gathered}\]
  3. H2O2-photolysis:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaIWa% GaaGioaGGaaiab-bcaGiaab6gacaqGTbGaaeOoaiab-bcaGiabfA6a% gnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaaiikaiaaikdacaaI5a% GaaGioaiab-bcaGiab-P5aljaacMcacqGH9aqpcqWFGaaicqWFOaak% cqWFWaamcqWFUaGlcqWF5aqocqWF4aaocqWFGaaicqGHXcqScqWFGa% aicqWFWaamcqWFUaGlcqWFWaamcqWFZaWmcqWFPaqkcqWFGaaicaqG% MbGaae4BaiaabkhacaqGGaGaamiCaiaabIeacaqGGaGaeyizImQaae% iiaiaabEdacaqGSaaabaGae8hiaaIae8hiaaIae8hiaaIae8hiaaIa% e8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaaIae8hiaa% Iae8hiaaIae8hiaaIae8hiaaIaeuOPdy0aaSbaaSqaaiab-95apjab% -D5aibqabaGccaGGOaGaamivaiaacMcacqGH9aqpcqqHMoGrdaWgaa% WcbaGae83Nd8Kae83LdGeabeaakiaacIcacaaIYaGaaGyoaiaaiIda% cqWFGaaicqWFAoWscaGGPaGae8hiaaIaaeyzaiaabIhacaqGWbGaae% iiamaadmaabaGaaeikaiaabAdacaqG2aGaaeimaiaabccacqGHXcqS% caqGGaGaaeymaiaabMdacaqGWaGaaeykaiaabIcadaWcaaqaaiaabg% daaeaacaqGYaGaaeyoaiaabIdaaaGaaeiiaiabgkHiTiaabccadaWc% aaqaaiaabgdaaeaacaWGubaaaiaabMcaaiaawUfacaGLDbaacaGGSa% aabaGaaG4maiaaiwdacaaIXaGaaeiiaiaab6gacaqGTbGaaeOoaiab% -bcaGiabfA6agnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaaiikai% aaikdacaaI5aGaaGioaiab-bcaGiab-P5aljaacMcacqGH9aqpcqWF% GaaicqWFOaakcqWFWaamcqWFUaGlcqWF5aqocqWF2aGncqWFGaaicq% GHXcqScqWFGaaicqWFWaamcqWFUaGlcqWFWaamcqWF0aancqWFPaqk% cqWFGaaicaqGMbGaae4BaiaabkhacaqGGaGaaeinaiaabccacqGHKj% YOcaqGGaGaamiCaiaabIeacaqGGaGaaeypaiaabccacaqG3aGaaeil% aaqaaiab-bcaGiab-bcaGiab-bcaGiab-bcaGiab-bcaGiab-bcaGi% ab-bcaGiab-bcaGiab-bcaGiab-bcaGiab-bcaGiab-bcaGiab-bca% Giab-bcaGiabfA6agnaaBaaaleaacqWFFoWtcqWFxoasaeqaaOGaai% ikaiaadsfacaGGPaGaeyypa0JaeuOPdy0aaSbaaSqaaiab-95apjab% -D5aibqabaGccaGGOaGaaGOmaiaaiMdacaaI4aGae8hiaaIae8NMdS% Kaaiykaiab-bcaGiaabwgacaqG4bGaaeiCaiaabccadaWadaqaaiaa% bIcacaqG1aGaaeioaiaabcdacaqGGaGaeyySaeRaaeiiaiaabgdaca% qG2aGaaeimaiaabMcacaqGOaWaaSaaaeaacaqGXaaabaGaaeOmaiaa% bMdacaqG4aaaaiaabccacqGHsislcaqGGaWaaSaaaeaacaqGXaaaba% GaamivaaaacaqGPaaacaGLBbGaayzxaaGaaiOlaaaaaa!F3D0!\[\begin{gathered}08 {\text{nm:}} \Phi _{{\rm O}{\rm H}} (298 {\rm K}) = (0.98 \pm 0.03) {\text{for }}p{\text{H }} \leqslant {\text{ 7,}} \hfill \\\Phi _{{\rm O}{\rm H}} (T) = \Phi _{{\rm O}{\rm H}} (298 {\rm K}) {\text{exp }}\left[ {{\text{(660 }} \pm {\text{ 190)(}}\frac{{\text{1}}}{{{\text{298}}}}{\text{ }} - {\text{ }}\frac{{\text{1}}}{T}{\text{)}}} \right], \hfill \\351{\text{ nm:}} \Phi _{{\rm O}{\rm H}} (298 {\rm K}) = (0.96 \pm 0.04) {\text{for 4 }} \leqslant {\text{ }}p{\text{H = 7,}} \hfill \\\Phi _{{\rm O}{\rm H}} (T) = \Phi _{{\rm O}{\rm H}} (298 {\rm K}) {\text{exp }}\left[ {{\text{(580 }} \pm {\text{ 160)(}}\frac{{\text{1}}}{{{\text{298}}}}{\text{ }} - {\text{ }}\frac{{\text{1}}}{T}{\text{)}}} \right]. \hfill \\\end{gathered}\] Together with the absorption coefficients and an assumed actinic flux within atmospheric droplets of twice the clear air value, the partial photolytic lifetimes (τOH) of these molecules at 298 K are estimated as 10.5 d, 5.4 h and 30.3 h for NO3 -, NO2 - and H2O2, respectively. These lifetimes will increase by a factor of two (NO3 -, NO2 -) and by 15% (H2O2) at T=278 K. Using average ambient concentrations in tropospheric aqueous droplets, the photolytic OH source strengths from these species are calculated to be 2.8×10-11, 1.3×10-11 and 1.4×10-11 mol 1-1 s-1 for NO3 -, NO2 - and H2O2 respectively.
  相似文献   

4.
A method based on the principle of the Method of Weighted Residuals for evaluating the roughness-length (z 0) and zero-plane displacement (d) is presented. This method not only can minimize errors involved during the calculation process but can also smooth and re-distribute the already minimized error in a most favourable manner via using appropriate weighting functions. With the inclusion of d in addition to z 0, formulae for wind and temperature profiles in the surface layer are presented by:% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbGaeyypa0% ZaaSaaaeaacaWG1bWaaSbaaSqaaiaacQcaaeqaaaGcbaGaam4Aaaaa% daWadaqaaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiaadQhacqGHsi% slcaWGKbaabaGaamOEamaaBaaaleaacaaIWaaabeaaaaaakiaawIca% caGLPaaacqGHRaWkcqaHipqEaiaawUfacaGLDbaaaaa!43FC!\[U = \frac{{u_* }}{k}\left[ {\ln \left( {\frac{{z - d}}{{z_0 }}} \right) + \psi } \right]\]and% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCcqGHsi% slcqaH4oqCdaWgaaWcbaGaaGimaaqabaGccqGH9aqpcqaH4oqCdaWa% daqaaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiaadQhacqGHsislca% WGKbaabaGaamOEamaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGL% PaaacqGHRaWkcqaHipqEdaWgaaWcbaacbmGaa8hvaaqabaaakiaawU% facaGLDbaaaaa!485A!\[\theta - \theta _0 = \theta \left[ {\ln \left( {\frac{{z - d}}{{z_0 }}} \right) + \psi _T } \right]\]where and T are the integrated diabetic influence functions' for velocity and temperature profiles respectively.Analytical expressions for both and T as functions of wind shear or, implicitly in terms of the Richardson number have been derived.Presented at the 10th Annual Congress of the Canadian Meteorological Society, Quebec City, Canada, May 26–28, 1976.  相似文献   

5.
This paper describes a framework to evaluate air quality model predictions against observations. We propose the following relationship between observations and predictions from an adequate model% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaaja% WaaSbaaSqaaiaaicdaaeqaamXvP5wqonvsaeHbfv3ySLgzaGqbaOGa% e8hkaGIaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS% baaSqaaiaaikdaaeqaaOGae8xkaKIaeyypa0Jabm4qayaajaWaaSba% aSqaaiaadchaaeqaaOGae8hkaGIaamiEamaaBaaaleaacaaIXaaabe% aakiab-LcaPiab-TcaRiabew7aLjab-HcaOiaadIhadaWgaaWcbaGa% aGOmaaqabaGccqWFPaqkaaa!4F93!\[\hat C_0 (x_1 ,x_2 ) = \hat C_p (x_1 ) + \varepsilon (x_2 )\],where x 1 refers to the inputs used in the model prediction C p(x 1), and x 2denotes unknown variables which affect the observed concentration C 0. The hats associated with C pand C 0denote transformations to convert the residual to a white noise sequence which is normally distributed. In this paper we assume % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaaja% GaeyyyIORaciiBaiaac6gacaWGdbaaaa!3B39!\[\hat C \equiv \ln C\].The standard deviation of determines the expected deviation between model prediction and observation. The purpose of model improvement is to make this deviation as small as possible.The formalism we have proposed is applied to the evaluation of two models developed by this author. We show how careful analysis of residuals can lead to improvements in the model. We have also estimated for each of the models.In the last part of the part of the paper we show how the statistics of can be used to interpret model predictions.  相似文献   

6.
The formation mechanism of the nocturnal urban boundary layer (UBL), especially in the winter nighttime, was investigated based on the extensive field observations conducted during November 1984 in Sapporo, Japan. A strong, elevated inversion formed over the Sapporo urban area and the inversion base height was approximately twice the average building height. Velocity fluctuations u, w and Reynolds stress % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] had nearly uniform profiles within the nocturnal UBL and decreased with height above the UBL. On the other hand, temperature fluctuations t , and heat fluxes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG3bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B58!\[\overline {w^1 \theta ^1 } \] had peaks at the inversion base and small values within the nocturnal UBL. The turbulent kinetic energy budget showed that the turbulent transport term and shear generation from urban canopy elements are important in the nocturnal UBL development; the role of the buoyancy term is small. The turbulence data analysis and application of a simple advective model showed that the mechanism of UBL formation may be controlled by the downward transport of sensible heat from the elevated inversion caused by mechanically-generated turbulence.Nomenclature g accelaration due to gravity, m s-2 - k turbulent kinetic energy, m2 s-1 - K m eddy viscosity, m2 s-1 - L Monin-Obukhov lenght, m - p pressure, Kg m-2 - U, V, W mean wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - u 1, w 1 wind speed fluctuation in the downwind and vertical direction, respectively, m s-1 - u 1 friction velocity, m s-1 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] momentum flux, m2s-2 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 \theta^1 } \] sensible heat flux, m2s-1°C - WD wind direction, deg - WS wind speed, m s-1 - z altitude, m - Z h inversion base height, m - Z j wind maximum height, m - Z t inversion top height, m - T u-r heat island intensity, °C - temperature lapse rate at rural site, °C m-1 - energy dissipation rate, m2s-3 - 1 Potential temperature fluctuation, °C - * scaling temperature, (=-% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \]/u*) °C - mean potential temperature fluctuation, K - density of air, Kgm-3 - K von Kármán constant (=0.4) - u, v, w standard deviation of wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - standard diviation of temperature, °C  相似文献   

7.
This paper considers the ground area which affects the properties of fluid parcels observed at a given spot in the Planetary Boundary Layer (PBL). We examine two source-area functions; the footprint, giving the source area for a measurement of vertical flux: and the distribution of contact distance, the distance since a particle observed aloft last made contact with the surface. We explain why the distribution of contact distance extends vastly farther upwind than the footprint, and suggest for the extent of the footprint the inequalities: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvam% aalaaabaGaamiAaaqaaiabeo8aZnaaBaaaleaacaWGxbaabeaakiaa% cIcacaWGObGaaiykaaaacqGH8aapcaWG4bGaeyipaWJaamyvaKazaa% iadaGabaqaamaaDaaajqwaacqaaiaadIgacaGGVaGabmOEayaacaGa% aiilaiaabccacaGGVbGaaiiDaiaacIgacaGGLbGaaiOCaiaacEhaca% GGPbGaai4CaiaacwgaaeaacaWGubWaaSbaaKazcaiabaGaamitaaqa% baqcKfaGaiaacIcacaWGObGaaiykaiaabYcacaqGGaGaaeiAaiaabc% cacaGGHbGaaiOyaiaac+gacaGG2bGaaiyzaiaabccacaGGZbGaaiyD% aiaackhacaGGMbGaaiyyaiaacogacaGGLbGaeyOeI0IaaiiBaiaacg% gacaGG5bGaaiyzaiaackhaaaaajqgaacGaay5EaaaakeaaaeaacaGG% 8bGaamyEaiaacYhacqGH8aapcqaHdpWCdaWgaaWcbaGaamODaaqaba% GccaGGOaGaamiAaiaacMcadaWcaaqaaiaadIhaaeaacaWGvbaaaaaa% aa!7877!\[\begin{array}{l} U\frac{h}{{\sigma _W (h)}} < x < U\left\{ {_{h/\dot z,{\rm{ }}otherwise}^{T_L (h){\rm{, h }}above{\rm{ }}surface - layer} } \right. \\ \\ |y| < \sigma _v (h)\frac{x}{U} \\ \end{array}\] where U is the mean streamwise (x) velocity, h is the observation height, L is the Lagrangian timescale, v and w are the standard deviations of the cross-stream horizontal (y) and vertical (z) velocity fluctuations, and is the Lagrangian Similarity prediction for the rate of rise of the centre of gravity of a puff released at ground.Simple analytical solutions for the contact-time and the footprint are derived, by treating the PBL as consisting of two sub-layers. The contact-time solutions agree very well with the predictions of a Lagrangian stochastic model, which we adopt in the absence of measurements as our best estimate of reality, but the footprint solution offers no improvement over the above inequality.  相似文献   

8.
Turbulent fluctuations of wind and temperature were measured using a three-component sonic anemometer at 8 m on a 30 m micro-meteorological tower erected at the Indian Institute of Technology (IIT) Kharagpur (22.3° N, 87.2° E), India, as part of the Monsoon Trough Boundary Layer Experiment (MONTBLEX). Diurnal and nocturnal variations of fluxes of sensible heat and momentum were estimated by the eddy correlation technique from 42 observations, each of 10 min duration during 6–8 July in the monsoon season of 1989. The estimated heat flux shows a diurnal trend while the momentum flux shows variability but no particular trend. The nocturnal heat flux changes sign intermittently.Fluctuations of vertical wind velocity wand temperature when normalised with the respective scaling parameters u *and * are found to scale with Z/L in accordance with the Monin-Obukhov similarity hypothesis: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaiodaaaaaaa!3FE8!\[\phi _w x(Z/L)^{1/3} \], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiaaigdacaGGVaGaaG4maaaaaaa!40A2!\[\phi _\theta x(Z/L)^{1/3} \] during unstable conditions and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiaadEhaaeqaaOGaamiEaiaacIcacaWGAbGaai4laiaadYea% caGGPaaaaa!3D90!\[\phi _w x(Z/L)\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdy2aaS% baaSqaaiabeI7aXbqabaGccaWG4bGaaiikaiaadQfacaGGVaGaamit% aiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa!401F!\[\phi _\theta x(Z/L)^{ - 1} \] during stable conditions. Correlation coefficients for heat and momentum flux % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] and uwshow stability dependence. For unstable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] increases with increasing ¦Z/L¦ whereas uwdecreases. During stable conditions, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaadEhacqaH4oqCaeqaaaaa!3A71!\[\gamma _{w\theta } \] decreases with increasing Z/L while uwdecreases very slowly from a value -0.36 to -0.37.  相似文献   

9.
In usual aerodynamic bulk formulas, the drag coefficient C d has been best estimated in the 5 to 16 m s–1 range of mean wind velocity; a value of 1.3 × 10–3 is often considered for operational use. However, in the 0 to 5 m s–1 range of mean wind velocity, corresponding to meteorological conditions of very light wind, experimental results have not resulted in any convincing agreement between various authors (Hicks et al., 1974; Wu, 1969; Kondo and Fujinawa, 1972; Mitsuta, 1973; Brocks and Krugermeyer, 1970).In the present paper, the drag coefficient is experimentally determined in conditions of very light wind and limited fetch (about 250 m). Due to this limited fetch, we have to be cautious in the extrapolation of our results to other sites. Nevertheless, some of experimental results are worth describing, considering the paucity of data in light wind conditions.Mean value and standard deviation (respectively 1.84 × 10–3 and 1.24 × 10–3) are obtained from 70 runs of 10-min duration. Mean wind velocities observed at 2 m above water surface are found to lie between 1.2 and 3.6 m s–1. Whereas this mean value is in fair agreement with C d 10 = 1.3 × 10–3, usually given for the 5 to 16 m s–1 range (Kraus, 1972), the above value for the standard deviation seems too large to be left without further analysis.A more exhaustive analysis of the 70 values obtained for C d shows that it depends on a parameter characteristic of longitudinal fluctuations of the wind velocity. A similar idea was put forward earlier by Kraus (1972). Relations between the drag coefficient and wind fluctuations may be tentatively given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% igdacaGGUaGaaGimaiaaiEdacqGHRaWkcaaIXaGaaGinaiaac6caca% aIZaGaaGinamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadwhacaGGNaaa% beaaaOqaaaaaaiaawIcacaGLPaaaruqqYLwySbacfaGaa8hEaiaa-b% cacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaabcca% caqGGaGaaeiiaiaabccacaqGXaGaaeOlaiaabAdacaqGGaGaaeyBai% aabccacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiabgsMiJkqa% dwhagaqeamaaBaaaleaacaaIYaaabeaakiabgsMiJkaaiodacaGGUa% GaaGOnaiaab2gacaqGGaGaae4CamaaCaaaleqabaGaaeylaiaabgda% aaaaaa!634E!\[C_{d2} = \left( { - 1.07 + 14.34\frac{{\sigma _{u'} }}{{}}} \right)x 10^{ - 3} {\text{ 1}}{\text{.6 m s}}^{{\text{ - 1}}} \leqslant \bar u_2 \leqslant 3.6{\text{m s}}^{{\text{ - 1}}} \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% iodacaGGUaGaaGioaiaaiAdacqGHRaWkcaaIZaGaaiOlaiaaiodaca% aI2aGaam4raaGaayjkaiaawMcaaerbbjxAHXgaiuaacaWF4bGaa8hi% aiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaeilaa% aa!4B42!\[C_{d2} = \left( { - 3.86 + 3.36G} \right)x 10^{ - 3} {\text{,}}\] where u/\-u 2 and G, respectively, represent the standard deviation of u normalized with \-u 2 and the longitudinal gust factor quoted in Smith (1974).We have established a relationship between these fluctuation parameters and the stability as given by a bulk layer Richardson number (between 0 and 2 m). These relations are given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHdpWCdaWgaaWcbaGaamyDaiaacEcaaeqaaaGcbaGabmyDayaaraWa% aSbaaSqaaiaaikdaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymai% aaikdacqGHRaWkcaaIZaGaaiOlaiaaiIdacaaI1aGaaeiiaiaabkfa% caqGPbWaaSbaaSqaaiaabcdacaqGTaGaaeOmaaqabaaaaa!4802!\[\frac{{\sigma _{u'} }}{{\bar u_2 }} = 0.12 + 3.85{\text{ Ri}}_{{\text{0 - 2}}} \] and G=1.35+14.56 Ri0–2. The increase in gustiness with stability is in qualitative agreement with Goptarev (1957)'s experimental results.In spite of the high-level correlation between C d and u/\-u 2(G) on the one hand and between u/\-u 2(G) and Ri0–2on the other hand, we found a poor relationship between C d and Ri0–2. It is worth noting too that the trend observed here for C d to increase with stability is in complete disagreement with the usual theoretical expectation for C d to decrease with increasing layer stability above water.

E.R.A. du C.N.R.S. n 259.  相似文献   

10.
The structure parameters of temperature (C T 2 ), humidity (C Q 2 ) and temperature-humidity (C TQ ) were observed at a height of 4 m in the unstable surface layer using thin platinum wires and two Ly- hygrometers. Two ways of measuring structure parameters were employed: one using spaced sensors, the other using time-delayed observations at one location. It is found that the three structure parameters follow free-convection scaling down to -z/L 0.02. The scaling functions % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]1 (of C T 2 ), % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]2 (of C TO ) and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]3 (of C Q 2 ) are found to be related through % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]2/% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]1 0.69 and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]3/% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa!3346!\[f\]1 0.84. The usefulness of the structure parameters for inferring the fluxes of heat and water vapor, as well as the Bowen ratio, is demonstrated. The scatter is about 30% on either side of the mean.This work was done while the author was a visiting scientist at the Wave Propagation Laboratory, NOAA, ERL, Boulder, U.S.A. He received support from the Netherlands Minister for Science Policy and the U.S. Army Research Office.  相似文献   

11.
The kinetics of the reaction of NO2 with O3 have been investigated at 296 K, using UV absorption spectroscopy to monitor decay of NO2 or O3 and infrared laser absorption spectroscopy to monitor formation of the reaction product N2O5. The results both for the rate coefficient at 296 K (k 1=3.5×10-17 cm3 molecule-1 s-1) and the reaction stoichiometry (NO2/O3=1.85±0.09) are in good agreement with previous studies, confirming that the two step mechanism involving formation of symmetrical NO3 as an intermediate is predominant.% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaaeOmaaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaa% bodaaeqaaOWaa4ajaSqaaaqabOGaayPKHaGaaeOtaiaab+eadaWgaa% WcbaGaae4maaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaabkdaaeqa% aaaa!41D7!\[{\text{NO}}_{\text{2}} + {\text{O}}_{\text{3}} \xrightarrow{{}}{\text{NO}}_{\text{3}} + {\text{O}}_{\text{2}} \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaae4maaqabaGccqGHRaWkcaqGobGaae4tamaaBaaa% leaacaqGYaaabeaakiabgUcaRiaab2eadaGdKaWcbaaabeGccaGLsg% cacaqGobWaaSbaaSqaaiaabkdaaeqaaOGaae4tamaaBaaaleaacaqG% 1aaabeaakiabgUcaRiaab2eaaaa!4464!\[{\text{NO}}_{\text{3}} + {\text{NO}}_{\text{2}} + {\text{M}}\xrightarrow{{}}{\text{N}}_{\text{2}} {\text{O}}_{\text{5}} + {\text{M}}\]A possible minor role for the unsymmetrical ONOO species is suggested to account for the lower-than-expected stoichiometry factor. The importance of this reaction in the oxidation of atmospheric NO2 is discussed.  相似文献   

12.
The standard deviation of temperature T is proposed as a temperature scale and as a velocity scale to describe the behaviour of turbulent flows in the Atmospheric Surface Layer (ASL), instead of * andu * of the Monin—Obukhov similarity theory, and ofT f andU f used for free convection stability conditions. On the basis of experimental evidence reported in the literature, it is shown that T T f andv * U f in the free convection region, and T * andv * U * in nearneutral and stable conditions. This implies that the proposed scales can be applied for all stabilities. Furthermore, a new length scale is proposed and its relation with Obukhov length is given. Also, a simple semi-empirical expression is presented with which T andv * can be evaluated in a rather simple way. Some examples of practical applications are given, e.g., a stability classification for unstable conditions.  相似文献   

13.
Zusammenfassung Eine endliche Reihe (Sequenz) wird als eine der möglichen Permutationen ihrer Glieder aufgefaßt. Es wird gezeigt, daß die Summe der absoluten Differenzen der aufeinanderfolgenden Glieder gleich ist , wo die natürliche Zahlen sind und nur von der Rangordnung der Glieder der Reihe (von der Permutation) abhängen; die j sind von der Reihenfolge unabhängig und werden durch die Dispersion der Reihenglieder bestimmt. Die j und die j werden separat untersucht; der Erwartungswert der erwähnten Differenzsumme wird abgeleitet. Verschiedene bereits bekannte und auch erstmalig hier vorgeschlagene Maßzahlen werden geprüft. An Reihen jährlicher Regenmengen wird die Rolle der j und der j und das Verhalten der besprochenen Maßzahlen veranschaulicht.
Summary A series ofn members can be considered as one of the possible permutations of its members. It is shown that the sum of the linear successive differences is equal to the expression , where the j are positive integers, dependent only upon the rank-order (the permutation) of the members, while the j are independent of the order of the succession and are determined by the dispersion of the members of the series. The factors j and j are separately investigated; the expected value of the sum of the linear successive differences is established. Various related statistical measures, already in usage and new ones suggested here, are discussed. Series of yearly rainfall amounts are used to show the effects of the j and j and to discuss the behaviour of the various measures.

Résumé Une série, constituée parn valeurs, est regardée comme une des possibles permutations de ces valeurs. L'auteur montre que la somme des différences absolues, qui se présentent entre les valeurs consécutives de la série, est égale à l'expression . Les j sont des nombres entiers positifs et ne dépendent que de l'ordre des membres de la série, tandis que les j, indépendants de l'ordre, sont déterminés par la dispersion des membres. Les facteurs j et j sont étudiés séparément; l'espérance mathématique de la somme mentionnée est dérivée. Des paramètres statistiques déjà connus ou proposés ici pour la première fois, sont discutés. Le rôle des j et des j et le comportement des divers paramètres sont montrés à l'aide de séries de totaux annuels de pluies.
  相似文献   

14.
An equation is derived for the components of the horizontal (turbulent) frictional force in the -coordinate system with special attention to mesometeorological flow models. The starting point is the horizontal equation of motion in its flux-form in the -system in which we replace (following Reynolds' procedure) the velocity components u,v and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % aaaaa!37B8! \[ \dot \sigma \] aswell as other relevant quantities by terms of the form u = + u,..., = ± + % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbai % Gbauaaaaa!37C3! \[ \dot \sigma ' \] , etc. ( = time average of u; u = fluctuating part of u.) Next, the equation is averaged with respect to time and terms which we believe are small in mesometeorological flows, are neglected. On expressing by an appropriate expression that involves w, the result shows the appearance of two new terms which, have not been considered previously in the published literature. While the expression earlier used in the literature involved the -derivative of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG3bGbauaaaaaaaa!380B!\[\overline {u'w'} \] alone, the new terms add the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37EC!\[\overline {u'^2 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the x-component of the force, and the -derivatives of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG2bGbauaadaahaaWcbeqaaiaaikdaaaaaaaaa!37ED!\[\overline {v'^2 } \]} and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaace% WG1bGbauaaceWG2bGbauaaaaaaaa!380A!\[\overline {u'v'} \] for the y-component, where and are the slopes of the -surfaces in the x- and y-directions, respectively. Further, a few numerical simulations of the sea-breeze over topography are carried out with and without the correction terms. It is shown that when corrections terms are not included the effective smoothing is stronger above the sloping regions and may amount to as high as 50 percent of the convergence with slopes of ~.04. The ìnclusìon of the new terms does not lead to any special computational difficulties and for that reason there is no compelling reason to neglect them, all the more so because, as is shown, the addition of the new terms results in a consistent apportioning of the degree of horizontal diffusion.On leave from CIMMS, Norman, OK.Now visiting Dept. of Met., Helsinki, Finland.  相似文献   

15.
Frequency spectra of atmospheric turbulenceS (f) in the inertial subrange are considered in the free convection regime over the sea surface in a case of motionless instrument measurements (Eulerian frequency spectra). The frequency spectra formulaef * S (f)/ 2 =c (f */f)5/3 for wind velocity (=1–3), temperature (=t) and humidity (=e) fluctuations are derived on the basis of similarity theory and the –5/3 law. These relations also can be derived from a consideration of convective large-scale advection of small eddies. The frequency scalef * = (N 1 2/)1/2 (H/z 2)1/3 is the lower bound of the inertial subrange and it is of order 10–2 Hz.The spectra formulae are compared with direct measurements of atmospheric turbulence from the fixed research tower in the coastal zone of the Black Sea in calm weather. It is shown that these formulae are realized at least over two to three decades of the frequency range (approximately from 10–2 to 10 Hz) and values of the numerical coefficients are found. The derived formulae can be used for calculations of sensible and latent heat fluxes by measuring the high-frequency range of spectra at a fixed point at low wind speeds when the conventional inertial dissipation method is not applicable.  相似文献   

16.
For the thermal stability function h used to calculate heat and moisture fluxes in the surface layer, we choose a formulation which has the theoretically correct free convection limit % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabgk% HiTGqaciaa-PhacaqGVaGaamitaiaabMcadaahaaWcbeqaaiabgkHi% TiaaigdacaGGVaGaaG4maaaaaaa!3DFE!\[{\rm{(}} - z{\rm{/}}L{\rm{)}}^{ - 1/3} \]. We then use the experimental result that z/L Ri to deduce a formulation with an exponent -1/6 for the momentum stability function m. This formulation also resolves the matching problem at the interface between the surface and Ekman layers. The proposed functions are found to remain reasonably close to another formulation that is well supported by observations and has exponents -1/2 for h and -1/4 for m. The intent of the proposals is mainly to clarify and simplify the parameterization of the convective boundary layer in present day atmospheric models, without significantly altering the results.  相似文献   

17.
The turbulent heat flux from arctic leads   总被引:2,自引:0,他引:2  
The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14R x 0.72 and the linear relation N = 1.6 × 10–3 R x+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and R x is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, , depends on the fetch, x, on the surface roughness of the lead, z 0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.  相似文献   

18.
Daily mean values of the Priestley-Taylor coefficient, ¯, are derived from a simple model of the daily growth of a convective boundary layer. For a particular control set of driving environmental variables, ¯ is related to the prescribed bulk surface resistance, rS by 1/¯ = 1/0 + mrS for parameters 0 and m. The dependence of the parameters 0 and m on weather is explored and a potential use of this linear relation to provide information about regional values of rS is indicated.  相似文献   

19.
Formation of methoxy (CH3O) radicals in the reaction (1) CH3O2+NOCH3O+NO2 at 298 K has been observed directly using time resolved LIF. The branching ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaae% 4qaiaabIeadaWgaaWcbaGaae4maaqabaGccaqGpbGaaeiiaiaabIca% ieqacaWF9aGaa8hiaiaa-nbicaWFGaGaeuiLdqKaai4waiaaboeaca% qGibWaaSbaaSqaaiaabodaaeqaaOGaae4taiaac2facaWFVaGaeuiL% dqKaai4waiaaboeacaqGibWaaSbaaSqaaiaabodaaeqaaOGaae4tam% aaBaaaleaacaqGYaaabeaakiaac2facaqGPaaaaa!4E31!\[\phi {\rm{CH}}_{\rm{3}} {\rm{O (}} = -- \Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}]/\Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}_{\rm{2}} ]{\rm{)}}\] has been determined by quantitative cw-UV-laser absorption at 257 nm of CH3O2 and CH3ONO, the product of the consecutive methoxy trapping reaction (2) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4qaiaabI% eadaWgaaWcbaGaae4maaqabaGccaqGpbacbeGaa83kaiaa-bcaieaa% caGFobGaa43taiaa+bcacaGFOaGaa83kaiaa+1eacaGFPaGaa4hiai% abgkziUkaabccacaqGdbGaaeisamaaBaaaleaacaqGZaaabeaakiaa% b+eacaqGGaGaaeOtaiaab+eacaqGGaGaa4hkaiaa-TcacaGFnbGaa4% xkaiaa+5cacaGFGaGaa4hiaiabeA8aMnaaBaaajqwaacqaaiaaboea% caqGibWaaSbaaKazcaiabaGaae4maaqabaqcKfaGaiaab+eaaSqaba% aaaa!55AC!\[{\rm{CH}}_{\rm{3}} {\rm{O}} + NO ( + M) \to {\rm{ CH}}_{\rm{3}} {\rm{O NO }}( + M). \phi _{{\rm{CH}}_{\rm{3}} {\rm{O}}} \] is found to be (1.0±0.2). The rate constant k 1 is (7±2) 10-12 cm3/molecule · s in good agreement with previous results.  相似文献   

20.
The rate of formation of N2O via the thermochemically favourable reaction of NO3(A2E) with N2, which would represent an additional source of stratospheric N2O and therefore NOx, has been investigated. Mixtures of NO2+O3 in synthetic air were photolysed at 662 nm. No evidence was found for the production of N2O via this pathway, the upper limit for the quantum yield of nitrous oxide formation being % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqOXdy2aaSbaaSqaamaaBaaameaadaWgaaqaamaaBaaabaGaamOt% amaaBaaabaGaaGOmaiaad+eaaeqaaaqabaaabeaaaeqaaaWcbeaatu% uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaOGae8hzIqOa% aGimaiaac6cacaaI2aGaaiyjaaaa!4E60!\[\phi _{_{_{_{N_{2O} } } } } \le 0.6\% \]. However, a dark conversion of NOx to N2O was observed and is attributed tentatively to a heterogeneous reaction on the wall of the reaction vessel. This process, although most likely to be insignificant in the atmosphere, needs to be taken into consideration in laboratory investigations or field studies of N2O emission or deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号