首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoride-hydroxyl exchange equilibria between phlogopite-pargasite and phlogopite-tremolite mineral pairs were experimentally determined at 1,173K, 500 bars and 1,073–1,173 K, 500 bars respectively. The distribution of fluorine between phlogopite and pargasite was found to favor phlogopite slightly, G ex . (1,173 K)=–1.71 kJ anion–1, while in the case of phlogopite-tremolite, fluorine was preferentially incorporated in the mica, G ex . (1,073)=– 5.67 kJ anion–1 and G ex . (1,173K)=–5.84 kJ anion–1. These results have yielded new values of entropy and Gibbs energy of formation for fluortremolite, S f =–2,293.4±16.0JK–1 mol–1 and G f = –11,779.3±25.0 kJ mol–1, respectively. In addition, F-OH mineral exchange equilibria support a recent molten oxide calorimetric value for the Gibbs energy of fluorphlogopite, G f =–6,014.0±7.0 kJ mol–1, which is approximately 40 kJ mol–1 more exothermic than the tabulated value.This work performed in part at Sandia National Laboratories supported by the U.S. Department of Energy, DOE, under contract number DE-AC04-76DP00789  相似文献   

2.
The mineral paragonite, NaAl2[AlSi3O10 (OH)]2, has been synthesized on its own composition starting from a variety of different materials. Indexed powder data and refined cell parameters are given for both the 1M and 2M1 polymorphs obtained. The upper stability limit of paragonite is marked by its breakdown to albite + corundum + vapour. The univariant equilibria pertaining to this reaction have been established by reversing the reaction at six different pressures, the equilibrium curve running through the following intervals: 1 kb: 530°–550° C 2 kb: 555°–575° C 3 kb: 580°–600° C 5kb: 625°–640° C 6 kb: 620°–650° C 7 kb: 650°–670° C.Comparison with the upper stability limit of muscovite (Velde, 1966) shows that paragonite has a notably lower thermal stability thus explaining the field observation that paragonite is absent in many higher grade metamorphic rocks in which muscovite is still stable.The enthalpy and entropy of the paragonite breakdown reaction have been estimated. Since intermediate albites of varying structural states are in equilibrium with paragonite, corundum and H2O along the univariant equilibrium curve, two sets of data pertaining to the entropy of paragonite (S 298 0 ) as well as the enthalpy ( H f,298 0 ) and Gibbs free energy ( G f,298 0 ) of its formation were computed, assuming (1) high albite and (2) low albite as the equilibrium phase. The values are: (1) (2) S 298 0 67.8±3.9 cal deg–1 gfw–1 63.7±3.9 cal deg–1 gfw–1 H f,298 0 –1417.9±2.7 kcal gfw–1 –1420.2±2.6 kcal gfw–1 G f,298 0 –1327.4±4.0 kcal gfw–1 –1328.5±4.0 kcal gfw–1.Adapted from a part of the author's Habilitationsschrift accepted by the Ruhr University, Bochum (Chatterjee, 1968).  相似文献   

3.
The discrepancy between the tabulated Gibbs Energies of Formation for Al2SiO5 and corundum relative to muscovite and kaolinite is considered to lie principally with the latter two minerals. New values for heat of formation of gibbsite [Gbs] will affect the tabulated H f 0 , G f(298,1) 0 for the other aluminous minerals which are referred to gibbsite as calorimetric aluminum reference. Gibbs Energy Difference Functions, calculated from phase equilibria in the system CaO-Al2O3-SiO2-(H2O-CO2), can be used to estimate consistent H f 0 , G f(298,1) 0 values for aluminous minerals. A self consistent data set is presented referred to G f(298,1) 0 [Corundum]=–378.08 kcal mol–1. Two independent values for G f(298,1) 0 [Anorthite]=–961.52 and –960.29 kcal, from a recalculation of the H f 0 [Anor] based upon the revised H f(298,1) 0 [Gbs]=–309.325 kcal mol–1 and from measurement of silica activity on the anorthite-saturated part of the CaO-Al2O3-SiO2 liquidus, respectively, are considered to show the magnitude of the discrepancy and are used in the calculations.  相似文献   

4.
Stability of titanian clinohumite: Experiments and thermodynamic analysis   总被引:2,自引:0,他引:2  
Reversed hydrothermal experiments on a natural titanoclinohumite [Ti-Cl; approximate formula Mg7.5FeTi0.5O16(OH)] show that it breaks down at 475°±11° C (3.5 kbar), 620°±11° C (14 kbar) and 675°±8° C (21 kbar) to the assemblage olivine +ilmenite+vapor. An internal-consistency analysis of the data yields r G s /0 (298 K, 1 bar)=36,760±3,326 cal (mole Ti-Cl)–1. r S s /0 (298 K, 1 bar)=34.14±5.91 cal deg–1(mole Ti-Cl)–1. Linear correlation coefficient r G–S 1.0. A solution model that accounts for TiO2-M(OH)2 and F-OH substitution shows that the results for our nearly F-free Ti-Cl are in reasonable agreement with the unreversed breakdown experiments of Mer-rill et al. (1972) on a F-bearing Ti-Cl.Because fluorine is necessary to stabilize Ti-Cl under mantle conditions, we suggest that Ti-Cl is much more likely to be a storage device for fluorine than for water in the mantle.  相似文献   

5.
Immiscible sulphide bodies show eutectic quench textures in a basaltic glass rock (mg=66) from a native iron-bearing dyke chilled at T=1,200° C and P=250 bars. The sulphide bodies are composed of troilite (90–91%), iron (9–10%) and very scarce vanadium-rich chromite and approach a ternary cotectic in the Ni-poor part of the system Fe-Ni-S. Transition element partition between olivine (mg=83), silicate glass (mg=59) and sulphide blebs indicate that the phases were equilibrated at 1,200° C. D vanadium(olivine/glass) is close to unity and reflect the reducing nature of the rock, for which estimates of f O210–12 to –13 and f S210–5 have been made. D nickel, cobalt, copper (sulphide/glass)=4,300, 230 and 380 respectively, are much higher than reported experimentally determined D's onmonosulphide/basalt glass at the same temperature and show increasing positive deviation (Ni>Co>Cu) with the increasingly siderophile character of the elements. K Dnickel-iron (sulphide/olivine)=63 is much higher than an experimentally reported value (33) and comparison with published thermodynamic data on Ni-partition between olivine and iron metal suggests that the positive deviation is roughly proportional to the excess metal component in the sulphide melt. The occurrence of strongly Ni-depleted reduced basalts on Disko shows that fractionation of metal and sulphides was a common and geologically important process.  相似文献   

6.
Late Hercynian U-bearing carbonate veins within the metamorphic complex of La Lauzière are characterized by two parageneses. The first is dominated by dolomite or ankerite and the second by calcite and pitchblende. Fluids trapped in the dolomites and ankerites at 350–400° C are saline waters (20 to 15 wt % eq. NaCl) with D –34 to –49. In the calcite they are less saline (17 to 8 wt % eq. NaCl) and trapped at 300–350° C with D –50 to –65. All fluids contain trace N2, CO2 and probably CH4. The carbonates have 13C –8 to –14. and derived their carbon from organic matter. Evolution of the physico-chemical conditions from dolomite (ankerite) to calcite deposition was progressive.H and O-isotope studies indicate the involvement of two externally derived fluids during vein development. A D-rich ( –35) low fO2, saline fluid is interpreted to have come from underlying sediments and entered the hotter overlying metamorphic slab and mixed with more oxidizing and less saline U bearing meteoric waters during regional uplift. This evidence for a sedimentary formation water source for the deep fluid implies that the metamorphic complex overthrusted sedimentary formations during the Late-Hercynian.  相似文献   

7.
Mean and turbulent velocity measurements of supersonic mixing layers   总被引:1,自引:0,他引:1  
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some largescale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u /U).List of Symbols a speed of sound - b total mixing layer thickness betweenU 1 – 0.1U andU 2 + 0.1U - f normalized third moment ofu-velocity,f u 3/(U)3 - g normalized triple product ofu 2 v,g u 2 v/(U)3 - h normalized triple product ofu v 2, h uv' 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1=2),M c (U 1U 2)/(a 1+a 2) - P static pressure - r freestream velocity ratio,rU 2/U 1 - Re unit Reynolds number,Re U/ - s freestream density ratio,s 2/ 1 - T t total temperature - u instantaneous streamwise velocity - u deviation ofu-velocity,u u–U - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - U average of freestream velocities, ¯U (U 1 +U 2)/2 - U freestream velocity difference,U U 1U 2 - v instantaneous transverse velocity - v deviation ofv-velocity,v v – V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

8.
The authors report a redox profile based on Mössbauer data of spinel and garnet to a depth of 210 km from mantle xenoliths of the northern (N) and southeastern (SE) Slave craton (northern Canada). The profile transects three depth facies of peridotites that form segments of different bulk composition, represented by spinel peridotite, spinel–garnet peridotite, low-temperature garnet peridotite, high-temperature garnet peridotite, and pyroxenite. The shallow, more depleted N Slave spinel peridotite records lower oxygen fugacities compared to the deeper, less depleted N Slave spinel–garnet peridotite, consistent with their different spinel Fe3+ concentrations. Garnet peridotites show a general reduction in log fO2 (FMQ)s with depth, where values for garnet peridotites are lower than those for spinel–garnet peridotites. There is a strong correlation between depletion and oxygen fugacity in the spinel peridotite facies, but little correlation in the garnet peridotite facies. The strong decrease in log fO2 (FMQ) with depth that arises from the smaller partial molar volume of Fe3+ in garnet, and the observation of distinct slopes of log fO2 (FMQ) with depth for spinel peridotite compared to spinel–garnet peridotite strongly suggest that oxygen fugacity in the cratonic peridotitic mantle is intrinsically controlled by iron equilibria involving garnet and spinel.
C. McCammonEmail: Phone: +49-921-553709Fax: +49-921-553769
  相似文献   

9.
Northern Brazil contains remnants of Mesozoic flood basalts and hypabyssal rocks that were apparently emplaced during tectonism related to opening of the Atlantic Ocean. Analyses and new K-Ar ages reveal that this 700x250 km Maranhão province (5°–8°S) has low-Ti basalts (1.1 wt% TiO2) in the western part that range about 160 to 190 Ma, and high-Ti basalts (3.4–4.4 wt% TiO2) in the eastern part about 115–122 Ma. Low-Ti basalt compositions are less evolved and have a smaller range, Mg# 62-56, than the high-Ti basalts, Mg# 44–33. General characteristics of the least evolved members of low- and high-Ti groups include, respectively, Zr 100 and 250 ppm, Sr 225 and 475 ppm, Ba 200 and 500 ppm, Nb 10 and 26 ppm, Y 29 and 36 ppm, La/Yb(n) 4.2 and 8.8, where La(n) is 30 and 90. Overall compositions resemble the low- and high-Ti basaltic rocks of the Mesozoic Serra Geral (Paraná) province in southern Brazil. The Maranhão low-Ti basalts have more radiogenic Sr and Pb and higher 18O than the high-Ti basalts. Respectively, low- vs high-Ti: Sr26–54 vs 15–18; 206Pb/204Pb=18.25–.78 vs 18.22–.24; and 18O 8.9–12.6 vs 6.5–8.6. Nd isotopes overlap: Nd–1.6 to –3.8 vs –2.1 to –3. Ages, compositions, and isotopes indicate that the low- and high-Ti groups had independent parentages from enriched subcontinental mantle. However, both groups can be modeled from one source composition if low-Ti basalt isotopes reflect crustal contamination, and if the parentages for each group were picritic liquids that represent either higher (for low-Ti) or lower (for high-Ti) percentages of melting of that single source. When comparing Pb isotopes of Maranhão and Serra Geral high-Ti basalts (uncontaminated) to evaluate the DUPAL anomaly, Maranhão has Pb 7/4=4.6–11, and Pb 8/4=72–87; Serra Geral has Pb 7/4=10–13, and Pb 8/4=95–125. The small difference is not enough to conform to DUPAL contours, and is inconsistent with large-scale isotopic heterogeneity of mantle beneath Brazil prior to rifting of South America from Africa. Maranhão low-Ti magmas probably relate to the opening of central North Atlantic, and high-Ti magmas to the opening of equatorial Atlantic. The proposed greater percentage of source melting for low-Ti basalts may reflect a Triassic-Jurassic hotspot, while lesser melting for high-Ti magmas may relate to Cretaceous decompressional (rifting) melting.  相似文献   

10.
Grenville dolomitic marbles and calc-silicates at Stephen Cross Quarry, Québec, underwent contact metamorphism and metasomatism associated with the intrusion of the Wakefield syenite at ambient pressures of 0.4GPa at 1090–1070Ma. Fluid infiltration produced exoskarns, calcite+periclase+forsterite±diopside±orthoclase assemblages in the marbles, and quartz±calcite±wollastonite±diopside±anorthite assemblages in the calc-silicates. Phase-equilibria in the CaO–MgO–Al2O3–SiO2–H2O–CO2 system suggest that fluid infiltration occurred close to the thermal peak of contact metamorphism (715–815°C) and that the fluids hadXCO20.15. In the metasediments, 18O values of calcite (Cc) are as low as 8.6, suggesting that the fluids were in isotopic equilibrium with the syenites (18O =8.8–10.2). Marble 13C(Cc) values are-0.1 to-3.2; the lack of correlation between 13C(Cc) and 18O(Cc) is consistent with the infiltration of water-rich fluids. The resetting of stable isotopes and the mineralogical changes can be explained by time-integrated fluid fluxes of up to 110 m3/m2 (4×106 mol/m2), corresponding to actual fluxes of 3×10-11 to 3×10-12 m3/m2-s and intrinsic permeabilities of 10-18 to 10-20 m2 for fluid flow lasting 0.1-1Ma. Marble 18O(Cc) values do not correlate well with distance from the syenite, and fluids were probably channelled across lithological layering. The correlation between the degree of resetting of marble 18O(Cc) values with the abundance of submillimetre-wide veins, suggests that fluid focussing may have resulted from variations in fracture density. Late, lower temperature (<500°C), fluid flow formed serpentine (Serp) and brucite (Br) from periclase and forsterite. 18O(Br) and 18O(Scrp) values correlate with 18O(Cc), suggesting that retrogression involved only limited volumes of fluid. The observation that 18O(Cc-Br) and 18O(Cc-Serp) values are higher in marbles that have lower 18O(Cc) values is interpreted as indicating that fluid flow persisted to lower temperatures in those rocks due to higher intrinsic permeabilities. Calcite in the syenite was also formed by the influx of fluids during cooling. Syenite 18O(Cc) values are approximately in isotopic equilibrium with the high-temperature silicate minerals, suggesting that again only minor volumes of fluid were involved. In detail fluid flow was prolonged and complex, creating problems for the application of quantitative fluid flow models.This paper is a contribution to IGCP 304, Lower Crustal Processes  相似文献   

11.
The abundance of coexisting structural units in K-, Na-, and Li-silicate melts and glasses from 25° to 1654°C has been determined with in-situ micro-Raman spectroscopy. From these data an equilibrium constant, Kx, for the disproportionation reaction among the structural units coexisting in the melts, Si2O5(2Q3)SiO3(Q2)+SiO2(Q4), was calculated (Kx is the equilibrium constant derived by using mol fractions rather than activities of the structural units). From ln Kx vs l/T relationships the enthalpy (Hx) for the disproportionation reaction is in the range of-30 to 30 kJ/mol with systematic compositional dependence. In the potassium and sodium systems, where the disproportionation reaction shifts to the right with increasing temperature, the Hx increases with silica content (M/Si decreases, M=Na, K). For melts and supercooled liquids of composition Li2O·2SiO2 (Li/Si=1), the Hx is indistinguishable from 0. By decreasing the Li/Si to 0.667 (composition LS3) and beyond (e.g., LS4), the disproportionation reaction shifts to the left as the temperature is increased. For a given ratio of M/Si (M=K, Na, Li), there is a positive, near linear correlation between the Hx and the Z/r2 of the metal cation. The slope of the Hx vs Z/r2 regression lines increases as the system becomes more silica rich (i.e., M/Si is decreased). Activity coefficients for the individual structural units, i, were calculated from the structural data combined with liquidus phase relations. These coefficients are linear functions of their mol fraction of the form i=a lnX i+b, where a is between 0.6 and 0.87, and X i is the mol fraction of the unit. The value of the intercept, b, is near 0. The relationship between activity coefficients and abundance of individual structural units is not affected by temperature or the electronic properties of the alkali metal. The activity of the structural units, however, depend on their concentration, type of metal cation, and on temperature.  相似文献   

12.
We have developed a new technique for the experimental determination of the activities of oxide components in melts and minerals using the equilibrium between Pd alloy, oxygen, and the oxide component in the sample of interest. If a melt or mineral sample is equilibrated with Pd metal at fixed P, T, and f O 2, a small amount of each constituent oxide will reduce to metal and dissolve into the Pd, forming an alloy. Due to the extraordinary stability of dilute alloys of Pd with Mg, Al, and Si, these metals dissolve into the Pd in amounts easily measured with the electron microprobe at f O 2 s that can be achieved with conventional gas-mixing techniques. We determined the activity-composition relations for Pd–Mg, –Al, and –Si alloys by equilibrating Pd at fixed f O 2and T with periclase, corundum, and cristobalite (a oxide1). Because Mg, Al, and Si have constant activity coefficients in Pd at low concentrations, the activity of the oxide of each metal is a simple function of the ratio of the concentration of the metal in Pd in equilibrium with the sample to that in Pd in equilibrium with the pure oxide. Therefore, if Pd plus a melt or mineral and Pd plus pure oxide standards are equilibrated simultaneously at fixed T and f O 2, the precision of the analytical technique is the major limitation on the determination of oxide activities. We used Pd-oxide equilibration to explore activities in silicate melts analogous to Type B Ca–Al-rich inclusions (CAIs) from carbonaceous chondrites; the measured activities deviate systematically from model valves but agree to within 1–30%. The activities imply that Type B CAIs did not condense as liquids from a gas of solar composition, and that only very aluminous compositions are potential liquid condensates from the solar nebula. We also used Pd-oxide equilibration to determine the free energy of formation from the oxides, G f /O , of the spinel end-member MgAl2O4 at 1150 to 1400°C to a precision of 2–19% (1). Because the technique reflects equilibration at high temperature, the G f /O s accurately represent the mineral with equilibrium Mg–Al disorder at temperature, a feature not true of drop calorimetric results because of partial reordering during quenching. Our results indicate more negative G f Emphasis>/O and hence higher entropy of formation, S f Emphasis>/O , than given in most compilations of thermodynamic data for spinel.Division of Geological and Planetary Sciences Contribution #5278  相似文献   

13.
The exchange equilibrium between plagioclase and amphibole, 2 albite+tschermakite=2 anorthite+glaucophane, has been calibrated empirically using data from natural amphibolites. The partition coefficient, K D, for the exchange reaction is (X an/X ab)plag ·(Na, M4/Ca, M4)amph.. Partitioning is systematic between plagioclase and amphibole in suites collected from single exposures, but the solid solutions are highly non-ideal: values of In K D range from –3.0 at X an=0.30 to –1.0 at X an=0.90 in samples from a single roadcut. Changes in both K D and the topology of the ternary reciprocal exchange diagram occur with increasing metamorphic grade. Temperature dependence of In K D is moderate with ¯H35 to 47 kcal at X an=0.25; pressure dependence is small with ¯V –0.24 cal/bar. Usefulness of this exchange equilibrium as a geothermometer is restricted by uncertainties in the calculation of the amphibole formula from a microprobe analysis, especially with regard to Na, M4 in amphibole, to approximately ±50 ° C.  相似文献   

14.
This paper describes the distribution of Fe and Ni between the octahedral and tetrahedral sites in pentlandite (Fe,Ni)9S8. The dependence of the distribution on pressure and temperature and the activation energy of the cation exchange reaction were determined through annealing experiments. Synthetic crystals were annealed at 433–723 K and pressures up to 4 GPa, and natural crystals were annealed at 423, 448 and 473 K in evacuated silica capillary tubes for various durations. The cation distributions in the synthetic crystals were determined with an X-ray powder method employing the anomalous dispersion effect of CuK. and FeK radiations, while those of natural crystals were calculated from the cell dimensions. The values of U, S and V for the Fe/Ni exchange reaction are –6818 J mol–1, 20.52 J K–1 mol–1, and 6.99 × 10–6 m3 mol–1, respectively. The dependence of the Fe/Ni distribution on pressure (Pa) and temperature (Kelvin) was determined as lnK = 2.47+8.20 × 102 T –1+8.41 x 10–7 T –1 P, where K = (Fe/Ni)octahedral /(Fe/Ni)tetrahedral. The activation energy of the cation exchange reaction was 185 kJ mol–1.  相似文献   

15.
Recent low temperature, adiabatic calorimetric heat capacity measurements for grossular have been combined with DSC measurements to give entropies up to 1000 K. In conjunction with enthalpy of solution values for grossular, these data have yielded H f o (298.15K) and G f o (298.15K) values of –1583.2 ± 3.5 and –1496.74 ± 3.7 kcal mol–1 respectively. For 15 reactions in the CaO-Al2O3-SiO2-H2O system, thermodynamically calculated P-T curves have been compared with experimental reversals and have shown good agreement in most cases. Calculations indicate that gehlenite is probably totally disordered. Estimates of zoisite and lawsonite entropies are consistent with the phase equilibrium and grossular data, but estimates of the entropies of pyrope and andradite show large discrepancies when compared with experimental reversals.Contribution no. 600 from the Mineralogical Laboratory, The Department of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan 48109, USA  相似文献   

16.
Thermal treatments of anorthite carried out at up to 1,547° C show that the unit cell parameter changes as a function of the treatment temperature. The best fit curve found by non-linear least squares analysis is: =91.419-(0.327·10-6)T 2+(0.199·10-12)T 4-(0.391·10)T 6. The results obtained support significant Al,Si disorder (Al0.10, where Al=t 1(0)-1/3 [t 1(m)+t 2(0)+t 2(m)], Ribbe 1975), in anorthite equilibrated near the melting point and confirm a high temperature series differentiated from the low temperature series for calcic plagioclases in the An85–An100 range also. In the plot vs. An-content the high and low temperature curves intersect at An85 composition and progressively diverge in the An85–An100 range. The trends of the high and low temperature curves in this range are interpretable on the basis of the degree of Al, Si order in the average structures of calcic plagioclases.  相似文献   

17.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

18.
Two parameters GO2– and HO2– are defined as the differences between respectively the Gibbs free energies and the enthalpies of formation of an oxide and its corresponding aqueous cation. The Gibbs free energies and enthalpies of formation of phosphates from their consituent oxides are shown to be linear functions of respectively GO2– and HO2– of their constituent cations.  相似文献   

19.
The Miocene-Oligocene volcanism of this region is part of the larger Tertiary volcanic province found throughout E. Australia. Within the S.E. Queensland region, the volcanism is strongly bimodal, and has emanated from six major centres, and many additional smaller centres. The mafic lavas (volumetrically dominant) range continuously from ne-normative through to Q-normative and are predominantly andesine-normative; Mg/Mg+Fe (atomic ratios range from 30–60; K2O ranges from 0.42–2.93%, and TiO2 from 0.81–3.6%.Phenocryst contents are low (averaging 6.7 vol.%), and comprise olivine (Fa18–75; Cr-spinel inclusions occur locally in Mg-rich phenocrysts), plagioclase (An25–68), and less commonly augite, which is relatively aluminous in lavas of the Springsure volcanic centre. Very rare aluminous bronzite occurs in certain Q-normative lavas. Groundmass minerals comprise augite, olivine (Fa33–77), feldspar (ranging from labradorite through to anorthoclase and sanidine), Fe-Ti oxides, and apatite. Within many of the Q-normative lavas, extensive development of subcalcic and pigeonitic pyroxenes occurs, and also relatively rarely orthopyroxene. Mineralogically, the ne- and ol-normative lavas, and some of the Q-normative lavas are indistinguishable, and in view of the gradations in chemistry, the term hawaiite has been extended to cover these lavas. The term tholeiitic andesite is used to describe the Q-normative lavas containing Ca-poor pyroxenes as groundmass phases.Megacrysts of aluminous augite, aluminous bronzite, olivine, ilmenite, and spinel sporadically occur within the lavas, and their compositions clearly indicate that they are not derived from the Upper Mantle. Rare lherzolite xenoliths are also found.The petrogenesis of these mafic lavas is approached by application of the thermodynamic equilibration technique of Carmichael et al. (1977), utilizing three parental mineral assemblages that could have been in equilibrium with the magmas at P and T. The models are: (a) standard upper mantle mineralogy; (b) an Fe-enriched upper mantle model (Wilkinson and Binns 1977); (c) lower crust mineralogy, based on analysed megacryst compositions. The calculations suggest that these mafic magmas were not in equilibrium with either mantle model prior to eruption, but show much closer approaches to equilibrium with the lower crust model. Calculated equilibration temperatures and pressures (for the lower crust model) range from 995°–l,391° C (average 1,192), and 7.2–16.3 kb (average 12.4). These results are interpreted in terms of a model of intrusion and magma fractionation within the crust-mantle interface region, with consequent crustal underplating and thickening beneath the Tertiary volcanic regions. Some support for the latter is provided by regional isostatic gravity anomalies and physiographic considerations.  相似文献   

20.
Zusammenfassung Mikrosondenanalysen und die Verfeinerung der Kristallstruktur zeigen, daß Sylvanit, AuAgTe4, aus Baia de Arie (=Offenbánya), Rumänien, eine stöchiometrische Zusammensetzung und eine geordnete Kristallstruktur besitzt (a=8,95(1) Å,b=4,478(5) Å,c=14,62(2) Å; =145,35(5)°;Z=2; RaumgruppeP2/c–C 2h 4 ). Das Au-Atom ist von sechs Te-Atomen in einer für die Oxidationszahl III charakteristischen [4+2]-Koordination umgeben. Um das Ag-Atom (Oxidationszahl I) sind ebenfalls sechs Te-Atome, jedoch in einer [2+2+2]-Koordination, angeordnet. Über gemeinsame Kanten bauen AuTe6- und AgTe6-Polyeder Schichten parallel (100) auf. Diese Schichten werden über Te2-Hanteln (Te–Te=2,82 Å) zu einem Gerüst verknüpft.
Crystal chemistry of natural tellurides. I: Refinement of the crystal structure of sylvanite, AuAgTe4
Summary Electron microprobe analyses and the refinement of the crystal structure indicate, that sylvanite, AuAgTe4, from Baia de Arie (=Offenbánya), Romania, has a stoichiometric composition and an ordered crystal structure (a=8.95(1) Å,b=4.478(5) Å,c=14.62(2) Å; =145.35(5)°;Z=2; space groupP2/c–C 2h 4 ). The Au atom is surrounded by six Te atoms in a [4+2] coordination as characteristic for oxidation state III. Around the Ag atom (oxidation state I) are also six Te atoms, but arranged in a [2+2+2] coordination. Via common edges the AuTe6 and AgTe6 polyhedra build up sheets parallel to (100). These sheets are combined to a network of Te2 dumbbells (Te–Te=2.82 Å).


Mit 2 Abbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号