首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper proposes a systematic comparison between two methods of analysis that are well established in the field of earthquake engineering: nonlinear dynamic analysis and nonlinear static procedure (NSP), applied to the out‐of‐plane seismic response of two masonry façades representative of many ancient Italian churches. The comparison is based on extensive numerical analyses, which focus on the flexural and torsional mechanisms, while the in‐plane damage mechanisms and the possible detachment between the façade and the lateral walls because of a poor connection have been presently disregarded. The computations, both in the static and in the dynamic field, are based on a rigid body and spring model specifically implemented for this issue, computationally efficient and equipped with a realistic model of damage and hysteresis at the mesoscale. An innovative aspect of this study is the heuristic modelling of three‐wythe masonry, to include some typical texture effects on the macroscale nonlinear response. For each façade, two different masonry textures were considered, performing extensive dynamic analyses that offered a detailed overview about the performance under earthquakes of different intensities. In parallel, NSP and the classical N2‐based seismic assessment were applied. A critical discussion and comparison of the results of the two methods is presented to rationally appraise limits and opportunities. In particular, flexural and twisting out‐of‐plane mechanisms were clearly appraised in the dynamic field, whereas NSPs were not always able to describe the collapse, because they missed the partial failures determined by higher vibration modes, as could be expected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
As the first part of non‐structural component test series, interior drywall partitions are selected for an experimental program. This test series will cover non‐structural components that are significant in the economic losses in buildings subjected to seismic loading, namely interior drywall partitions, exterior cladding and window glasses, and ceilings. Four full‐scale drywall partitions with light‐gage steel stud framing were tested to observe damage in cyclic loading conditions. Effects of a door and an intersecting wall on the behaviour of drywall partition are studied. Damage was concentrated to perimeter regions where gypsum boards made contacts with ceiling, floor, or columns. Dynamic loading did not amplify the damage on a drywall partition over the damage observed from the quasi‐static test. Damage–repair cost relationships show that the repair cost reaches almost the initial cost under 2% radian interstorey drift. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The evaluation of the out‐of‐plane behaviour of unreinforced walls is one of the most debated topics in the seismic assessment of existing masonry buildings. The discontinuous nature of masonry and its interaction with the remainder of the building make the dynamic modelling of out‐of‐plane response troublesome. In this paper, the results of a shaking table laboratory campaign on a tuff masonry, natural scale, U‐shaped assemblage (façade adjacent to transverse walls) are presented. The tests, excited by scaled natural accelerograms, replicate the behaviour of external walls in existing masonry buildings, from the beginning of rocking motion to overturning. Two approaches have been developed for modelling the out‐of‐plane seismic behaviour: the discrete element method and an SDOF analytic model. Both approaches are shown to be capable of reproducing the experimental behaviour in terms of maximum rotation and time history dynamic response. Finally, test results and numerical time history simulations have been compared with the Italian seismic code assessment procedures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Seismic shocks occur sometimes as a sequence, close in space and time, of destructive events of comparable intensity. In these cases, a significant portion of the damage to historical buildings can be related with the cumulated damage on structures that become progressively more vulnerable. This research investigates the specific increase of damage determined by a sequence of strong ground motions, focusing the interest on the out‐of‐plane response of 2 church masonry façades. The dynamic analyses were performed by a specific rigid body and spring model RBSM, which only accounts for out‐of‐plane damage mechanisms. Two idealized models of façade, each made of 2 different masonry bonds, have been studied by applying various sequences of recorded accelerograms. The results highlighted a complex relationship between the spectral content of the seismic shocks and the characteristics of the structures that change in the course of the loading sequence due to the development of damage. The Housner spectral intensity proved to be a reliable scalar measure of the ground motion destructiveness for these façades. Moreover, when considering a design‐consistent accelerogram that causes a relevant damage pattern, ie, with a significant elongation of the effective first period of vibration, the numerical results indicated a possible spectral intensity threshold below which the occurrence of repeated seismic shocks, both before and after the reference design shock, can be considered as irrelevant. On the other hand, a catastrophic increase of damage should be expected when this threshold is overcome.  相似文献   

6.
This paper proposes an experimentally verified procedure to analytically model cold‐formed steel‐framed gypsum nonstructural partition walls considering all the critical components. In this model, the nonlinear behaviors of the connections are represented by hysteretic load‐deformation springs, which have been calibrated using the component‐level experimental data. The studs and tracks are modeled adopting beam elements with their section properties accounting for nonlinear behavior. The gypsum boards are simulated by linear four‐node shell elements. The proposed procedure is implemented to generate the analytical models of three full‐scale partition wall specimens in the OpenSees platform. The specimens were tested as a part of the NEESR‐GC Project on Simulation of the Seismic Performance of Nonstructural Systems. Force‐displacement responses, cumulative dissipated energy, and damage mechanisms from the analytical simulation are compared to the experimental results. The comparison shows that the analytical model accurately predicts the trend of the response as well as the possible damage mechanisms. The procedure proposed here can be adopted in future studies by researchers and also engineers to assess the seismic performance of partition walls with various dimensions and construction details, especially where test data are not available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this study the damage suffered by churches during the 2012 Emilia seismic sequence in Italy is analysed, based on surveys and inspections carried out in the area. Similarly to what was observed after other Italian earthquakes, the damage to churches was severe. However, the Emilia churches present some characteristic features such as the use of unreinforced clay brick masonry. In order to appropriately address the performance of this class of buildings, typical architectural layouts and construction techniques are described. Such techniques are interpreted also in the light of the local seismic catalogue. Fifty churches are then selected and their damage is studied, with reference to typical local-collapse mechanisms of different macro-elements. The study highlights that the damage is often concentrated at the top section of the façade, in the clerestory walls, in the vaults and in the bell towers. Structural analyses are performed to explain some of the observations. The overturning of the top section of the façade is analytically addressed, modelling the friction interlocking. With reference to the case study of San Francesco in Mirandola, non-linear static and dynamic analyses allow us to correlate the directionality of damage to the higher seismic demand along the NS direction, to point out the negligible role of the large vertical component of ground motion and to emphasise the relevance of the buttresses for the seismic response of the façade.  相似文献   

8.
The out‐of‐plane response of walls in existing stone masonry buildings is one of the major causes of vulnerability commonly observed in post‐earthquake damage surveys. In this context, a shaking table (ST) test campaign was carried out on a full‐scale masonry façade mainly focusing on the characterization of its out‐of‐plane overturning behaviour. The structure tested on the ST is a partial reproduction of an existing building from Azores, damaged during the 9 July 1998 Faial earthquake. The definition of the tested specimen as well as the selection of the input ground motion is reported in this paper. A specific emphasis is given to the definition of the time‐history to be applied during the tests because it was felt as an essential and crucial part of the work to obtain the desired overturning behaviour. The accelerogram to be imposed was selected from a large set of accelerograms (74) by means of a step‐by‐step procedure on the basis of several numerical analyses resorting to the rocking response of rigid blocks. A companion paper (Part 2) focuses on the ST test results and detailed data interpretation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A computational model for evaluating the dynamical response and the damage of large masonry walls subjected to out‐of‐plane seismic actions is presented. During earthquakes, these actions are often the main cause of damage for the front wall and lateral walls of old masonry‐built churches and monuments. Since the crack patterns often tend to subdivide the plane walls into a number of blocks, the model assumes such walls as a series of quadrilateral plane rigid elements connected to each other in the middle of their adjoining sides. Only the out‐of‐plane displacements are considered, and the connections are regarded as spherical elasto‐plastic joints which allow rotations whose axis is in the plane of the undeformed wall. The hysteretic characteristics of these joints are defined so as to approximate the brittle behaviour of masonry material and the degradation due to cyclic loadings. The numerical results obtained using a limited number of elements show that the global out‐of‐plane response of the masonry walls and the mechanical degradation at each connection are in accord with the observed behaviour of real churches hit by strong earthquakes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Nonstructural reinforced concrete flat walls architecturally designed as exterior/partition walls in concrete buildings were severely damaged by the 2011 earthquake off the Pacific coast of Tohoku. This damage was observed in the monolithic nonstructural flat walls of relatively old ductile concrete buildings. Although these flat walls might affect the overall seismic performance and behavior of a building, the nonstructural wall effects have not been clarified because of the complex interactions among the structural components. To understand these effects, this paper conducts an experimental and numerical investigation of the nonstructural wall effects, focusing on a typical residential building damaged by the 2011 earthquake. A single‐story, one‐bay moment‐resisting frame model of the building with a nonstructural flat wall was tested to clarify the fundamental behavior. The results reveal that the wall significantly contributed to the seismic performance of the overall frame until it failed in shear, subsequently losing structural effectiveness. Such experimental wall behavior could be simulated by the isoparametric element model. Moreover, the structural effects of the nonstructural flat walls on the global seismic performance and behavior of the investigated building were discussed through earthquake response analyses using ground motions recorded near the building site and pushover analyses. Consequently, the building damage could be simulated in an analytical case considering the nonstructural flat walls, showing larger inter‐story drifts in the lower stories due to softening of the walls. The analytical results also indicated that the softening of the nonstructural flat walls decreased the building ductility, as defined by ultimate inter‐story drifts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

14.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A building with a seismic isolation system, in an earthquake, is recognized as producing substantially smaller accelerations and deformations compared with a building that use other systems. This type of system is therefore expected to better protect the building's nonstructural components, equipment, and other contents that are essential for the activities conducted in the building. Unlike many available studies on building responses, only a small number of studies on a buildings' nonstructural component responses are available, and no study has directly addressed building performance with regard to nonstructural component protection. This paper therefore measures the performance of various seismically isolated buildings. Specifically, the effects of important structural parameters, namely, isolation stiffness, isolation damping ratio, and number of stories on the response of base‐isolated structures are investigated parametrically. Ground motions with 2% exceedence in 50years Maximum Considered Earthquake (MCE) are used. Performance is compared with that of fixed‐base structures in order to present data that will be useful in justifying the more costly technology. The buildings are 3, 9, and 20 stories, represented by MDOF shear‐beam models. As examples of displacement‐sensitive and acceleration‐sensitive components, partition walls and ceilings are considered, respectively. The Pacific Earthquake Engineering Research Center performance‐based earthquake engineering methodology is adopted to evaluate the failure return periods of the examples based on their available fragility curves. In addition, the curves are varied hypothetically to understand the sensitivity of the return period to the curve features. Then, the median and dispersion of fragility curves required to satisfy the components' desired failure return period are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic damage of internal partitions may cause significant earthquake loss; this phenomenon is caused by (a) their tendency to exhibit damage for low demand levels and (b) the consequent loss of inventory and breakdown that their collapse can cause. Quasi‐static tests are performed on six 5‐m‐high plasterboard internal partitions, which represent typical partitions in industrial and commercial buildings in the European area. A steel test setup is designed to transfer the load, which is provided by the actuator, to the partition. The testing protocol provided by Federal Emergency Management Agency (FEMA) 461 is adopted for the quasi‐static tests. The typical failure mode of the specimens is the buckling of a steel stud, which involves the boards that are attached to the buckled stud. The buckling failure usually concentrates across the plasterboard horizontal joints. A frictional behavior is exhibited for low demand levels, whereas a pinched behavior is shown for moderate‐to‐high demand levels. The interstory drift ratios required to reach a given damage limit state are evaluated using a predefined damage scheme. Based on the experimental data, the fragility curves for three different damage states (DS1, DS2, and DS3) are estimated. The fragility curve yields median interstory drift ratio values of 0.28%, 0.81%, and 2.05% and logarithmic standard deviations of 0.39, 0.42, and 0.46 for DS1, DS2, and DS3, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.  相似文献   

20.
There are numerous studies on the behavior of Unreinforced Masonry (URM) walls in both in‐plane (IP) and out‐of‐plane (OP) directions; however, few aimed at understanding the simultaneous contribution of these intrinsic responses during earthquakes. Undoubtedly, even a strong URM wall shows weakened capacity in the OP direction because of minor cracks and other damages in the IP direction, and this capacity reduction has not yet been accounted for in seismic codes. In this study, performance of three URM walls is evaluated by several numerical analyses in terms of the OP capacity reduction because of IP displacements and failure modes. Several parameters influencing the OP capacity have been studied including aspect ratio, roof boundary condition, IP displacement and IP loading patterns. The results indicate that reduction in the OP capacity of URM walls varies from negligible to very high depending on boundary conditions, IP failure mode and IP damage severity. Moreover, IP loading pattern is more important in walls with higher aspect ratios because of their IP failure modes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号