首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi‐storey main buildings constructed with a low‐rise podium structure possess some architectural merits but the setback features of such a building complex may lead to seismic response enlargement of the main buildings. This paper explores the possibility of using passive friction dampers to connect the podium structure to the main buildings to prevent their seismic response enlargement without violating the architectural features. A series of shaking table tests were carried out on one 3‐storey and one 12‐storey building models in fully‐separated, rigidly connected, and friction damper‐linked configurations. Four sets of seismic ground motions were selected as inputs to the shaking table. The control competence of two buildings linked with friction damper was evaluated by comparison of their responses with those from fully‐separated and rigidly connected cases. Experimental results showed that unfavourable seismic response amplification did occur in the building complex in the rigidly connected case. By contrast, friction damper showed effectiveness in reducing absolute acceleration and interstorey drift responses of both buildings if friction force level was appropriately applied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter‐storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
本文通过钢结构的振动台模型试验,研究了在刚性地基条件下矩形调谐流体阻尼器(TLD)对结构地震反应的减震机理和减震效果,为进一步研究土-结构相互作用对结构TLD减震控制效率影响的振动台模型试验提供对比数据。试验结果表明,在水箱中设置铁丝网有助于提高TLD的减震效率,地震动的频谱特性和峰值加速度大小对TLD的减震效率有重要影响。  相似文献   

4.
A tuned mass damper (TMD) system consists of an added mass with properly functioning spring and damping elements for providing frequency‐dependent damping in a primary structure. The advantage of a friction‐type TMD, that is, a nonlinear TMD, is its energy dissipation via a friction mechanism. In contrast, the disadvantages of a passive friction TMD (PF‐TMD) are its fixed and predetermined slip load and loss of tuning and energy dissipation capabilities when it is in a stick state. A semi‐active friction TMD (SAF‐TMD) is used to overcome these disadvantages. The SAF‐TMD can adjust its slip force in response to structure motion. To verify its feasibility, a prototype SAF‐TMD was fabricated and tested dynamically using a shaking table test. A nonsticking friction control law was used to keep the SAF‐TMD activated and in a slip state in earthquakes at varying intensities. The shaking table test results demonstrated that: (i) the experimental results are consistent with the theoretical results; (ii) the SAF‐TMD is more effective than the PF‐TMD given a similar peak TMD stroke; and (iii) the SAF‐TMD can also prevent a residual TMD stroke in a PF‐TMD system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.  相似文献   

6.
磁流变阻尼器是一种性能优良的智能阻尼器,将其应用于实际工程中具有广阔的前景。但目前对其在结构中的优化设计研究还不够多。提出一种用于中底层建筑MR半主动控制阻尼器优化设计的方法,它是以控制结构的第一振型反应为目标,可以兼顾安全和经济两方面的要求,且设计过程较为简便。仿真计算表明,对比以往所采用的试算法,这种方法在控制的有效性和可行性方面都有观显提高。  相似文献   

7.
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.  相似文献   

8.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper develops a two‐stage optimum design procedure for multiple tuned mass dampers (MTMD) to reduce structural dynamic responses with the limitation of MTMD's stroke. A new performance index, which is a linear combination of structural response ratio and MTMD stroke ratio by a weighting factor α, is proposed; α is in the range from 0 to 1.0. The larger the α, the more important the stroke. The case of α=1.0 indicates that MTMD is locked. The analytical results show that the MTMD's stroke can be significantly suppressed with little sacrifice of structural control effectiveness when an appropriate α is selected. To verify the design algorithm, a 360 kg‐MTMD composed of five TMD units arranged in parallel was fabricated. Shaking table tests of a large‐scale three‐story building with and without the MTMD under earthquake excitations were conducted at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan. The experimental results show that MTMD is not only effective in mitigating the building responses but also is successful in suppressing its stroke. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
结构模型的AMD主动控制试验   总被引:12,自引:1,他引:12  
本文介绍了作者研究设计的AMD装置。采用五层钢框架1:4模型AMD系统安装在模型的顶层,采用多种地震动加速度记录在哈尔滨建筑大学力学与结构实验中心的地震模拟振动台上进行了结构的AMD主动控制试验。试验结果表明:AMD主动控制系统对结构地震反应的控制是非常有效的。  相似文献   

11.
本文在此前一系列有关新型电磁驱动AMD控制系统力学建模、性能试验和控制策略研究的基础上,进行了结构地震响应控制的小型振动台试验研究。首先,针对配置了电磁驱动AMD控制系统的Quanser标准两层剪切型框架结构模型,建立了无控计算模型,通过正弦扫频试验验证了模型参数,从而为结构振动主动控制试验研究提供了准确的被控对象模型;其次,设计了电磁驱动AMD控制系统基于极点配置控制算法的试验控制策略和状态观测器,通过数值分析验证了状态观测器估计结果的准确性;最后,在完成以上各项准备工作的基础上,分别对结构输入了典型Benchm ark标准地震动,进行振动台试验,试验结果表明电磁驱动AMD控制系统对结构的地震响应具有显著的控制效果,验证了该新型系统应用于结构振动控制的有效性和可行性。  相似文献   

12.
Seismic performance attributes of multi‐story passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are investigated for 12‐story moment resisting frames modeled as ‘10+2’ stories and ‘8+4’ stories. Segmented upper portion of the stories are isolated as a tuned mass, and a passive viscous damper or semi‐active resetable device is adopted as energy dissipation strategy. The semi‐active approach uses feedback control to alter or manipulate the reaction forces, effectively re‐tuning the system depending on the structural response. Optimum tuned mass damper control parameters and appropriate matching SATMD configurations are adopted from a companion study on a simplified two‐degree‐of‐freedom system. Statistical performance metrics are presented for 30 probabilistically scaled earthquake records from the SAC project. Time history analyses are used to compute response reduction factors across a wide range of seismic hazard intensities. Results show that large SATMD systems can effectively manage seismic response for multi‐degree‐of freedom systems across a broad range of ground motions in comparison to passive solutions. Specific results include the identification of differences in the mechanisms by which SATMD and PTMD systems remove energy, based on the differences in the devices used. Additionally, variability is seen to be tighter for the SATMD systems across the suites of ground motions used, indicating a more robust control system. While the overall efficacy of the concept is shown the major issues, such as isolation layer displacement, are discussed in detail not available in simplified spectral analyses, providing further insight into the dynamics of these issues for these systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
以一座矮塔斜拉桥为研究对象,分析碰撞调谐质量阻尼器对于该结构的抑震效果。首先介绍了新型碰撞调谐质量阻尼器(Pounding Tuned Mass Damper,PTMD)的减震机理及基于接触单元的非线性碰撞力模型;之后,通过ANSYS软件中的APDL语言实现了PTMD减震系统的时域分析方法,并通过三条实际地震记录验证了PTMD的抑震效果。数值分析结果表明:(1)传统调谐质量阻尼器(tuned mass damper,TMD)及新型PTMD对于矮塔斜拉桥的位移、加速度及塔身弯矩响应均有较好的抑制效果;(2)PTMD相比传统TMD多了一种碰撞耗能模式,其减震效果略高于传统TMD。  相似文献   

14.
磁流变智能基础隔震系统研究   总被引:2,自引:3,他引:2  
本文将磁流变(MR)阻尼器与普通橡胶隔震支座相结合,组成智能基础隔震系统应用到结构控制中。在详细介绍了系统的各部分与整体运行情况后,采用LQR经典线性最优控制算法对结构进行了振动台试验研究。试验结果表明,由MR阻尼器提供可调阻尼力的智能隔震控制系统,能有效克服被动隔震最优控制频带窄的缺点,对较宽频域范围地震激励能进行有效的振动控制。其相对一般被动隔震装置,能同时减小上部结构加速度和隔震层位移.  相似文献   

15.
为了验证提出的新型筒式自复位形状记忆合金阻尼器(telescopic recentering shape memory al-loy damper,TRSMAD)对结构平动-扭转耦联振动反应的抑制作用,进行了偏心结构消能减震体系的振动台试验。设计了一个1/4缩尺的三层两跨单向偏心的钢框架模型,将提出的新型SMA阻尼器安装在结构底层的一侧,通过振动台分别对无控条件下和装有阻尼器的有控条件下的结构反应进行了研究。试验结果表明:(1)在各地震波作用下,TRSMAD对结构的平动反应有很好控制效果,而对结构各层扭转角位移的控制效果稍低;(2)不同地震波下的控制效果有所不同:对结构的平动位移而言,天津波的减震率最高,El Centro波次之,最后为Taft波;对结构扭转角的控制,平均而言,除了天津波作用下第二层为特例外,对El Centro波的减震效果最好,其次为Taft波,最后为天津波;(3)同一地震波下,阻尼器对结构模型一层的位移控制效果较其他层为优。  相似文献   

16.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
本文针对某平面不规则、立面开大洞、带高位转换层的超限复杂高层结构,首先建立了整体模型结构的非线性计算模型,根据振动台试验结果选择了材料非线性参数,进行了弹塑性时程分析,并对模型结构及参数进行了验证。用验证过的模型和参数对原型结构进行了弹塑性时程分析,并对该结构作出整体抗震性能评价。通过本文分析表明,按照试验微粒混凝土材性试验数据,考虑附加质量建立的计算模型,能较好地捕捉到整体结构初始时的频率、振型等动力特性;选择现有的软件确定构件的本构关系,将其输入通用程序进行弹塑性时程分析,能够获得结构的非线性动力反应;通过模型乃至原型结构的弹塑性时程分析,可以对该立面开大洞复杂结构整体抗震性能作出合理评价。  相似文献   

18.
This paper summarizes the relevant results of the design, construction, testing, and implementation of a nominal 120 kN magnetorheological damper developed to control a free‐plan tall building in Santiago, Chile, equipped with two 160‐ton tuned masses. Cyclic as well as hybrid simulation tests were performed on the prototype damper. Global building responses using measured MR properties showed good correlation with analytical estimations. Also, a proposed physical controller for the MR damper was validated through hybrid and building pull‐back tests. Its performance is essentially equivalent to that of an LQR controller, but the information needed in its implementation is considerably less. Pull‐back tests of 10 cm amplitude were performed on one mass along the flexible edge of the building and its response controlled using the passive and controlled modes of the MR damper. The MR damper was capable of controlling the TM displacements very effectively, as well as the simulated building response for different ground motions and harmonic excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the effectiveness of different design solutions for tuned mass dampers (TMD) applied to high‐rise cross‐laminated (X‐Lam) timber buildings as a means to reduce the seismic accelerations was investigated. A seven‐storey full‐scale structure previously tested on shaking table was used as a reference. The optimal design parameters of the TMDs, i.e. damping and frequency ratios, were determined by using a genetic algorithm on a simplified model of the reference structure, composed by seven masses each representing one storey. The optimal solutions for the TMDs were then applied to a detailed finite element model of the seven‐storey building, where the timber panels were modelled with shell elements and the steel connectors with linear spring. By comparing the numerical results of the building with and without multiple TMDs, the improvement in seismic response was assessed. Dynamic time‐history analyses were carried out for a set of seven natural records, selected in accordance with Eurocode 8, on the simplified model, and for Kobe earthquake ground motion on the detailed model. Results in terms of acceleration reduction for different TMD configurations show that the behaviour of the seven‐storey timber building can be significantly improved, especially at the upper storeys. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号