首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A theory for the origin and bulk chemical composition of the Galilean satellites is presented — to coincide with the start of the 2-year orbital tour of this satellite system by the Galileo Orbiter. The theory is based on the author's modern Laplacian theory of solar system origin (Prentice 1978a). The nub of the work reported here is that the Jupiter system is indeed a miniature planetary system that formed by much the same physical and chemical processes that were responsible for the condensation of the sun's own family of planets. In particular, a phenomenon of supersonic turbulent convection which I claim caused the proto-solar cloud to rid excess spin angular momentum, by shedding a concentric family of orbiting gas rings at the present planetary orbits, may also have operated with similar effect within the proto-Jovian cloud.Several predictions are made for the bulk chemical composition and physical structure of the icy Galilean satellites which, it is hoped, can be tested by the Galileo Orbiter. The mean density of Callisto is consistent with that of a chemically homogeneous body consisting of about 50% rock, 45% water ice, and 5% ammonia ice, incorporated as the hydrate NH3·H2O. Such a higher-than-solar mass abundance ratio of rock to ice arises naturally within the proto-Jovian cloud since (i) only 34% of the available H2O vapor within the gas ring shed by the proto-solar cloud at Jupiter's orbit was condensed in solid form, and (ii) gravitational sedimentation of solids onto the mean orbit of the proto-solar gas ring leads to an enhancement in the heavy element fraction of the captured primitive Jovian atmosphere. All in all, I predict Jupiter's primitive atmosphere to be enhanced by a factor en 2 in its rock mass fraction (including S) and by a factor 1.3 in its water content, relative to solar abundances. NH3 and CH44 are present in almost solar proportions.Initially, Ganymede consisted of a chemically uniform mixture of rock and water ice in the proportions 0.524 : 0.476. The observed mean density of this satellite, however, lies midway between the mean densities expected for homogeneous and fully differentiated rock/ice bodies. The calculations presented here suggest that this body is about half-differentiated. I predict that the Galileo Orbiter will find the mean axial moment-of-inertia factor of Ganymede to be 0.35 ± 0.01.The circum-Jovian gas ring from which Europa condensed had a temperature of 302 K and a mean orbit gas pressure of 2.8 bar. Initially, this satellite consisted of a uniform mix of hydrated rocks, of which brucite Mg(OH)2 was the principal constituent. The observed mean density of Europa coincides with that expected for this mix, provided that its 9.4% native H2O content is now fractionated from the rock and resides at the satellite surface, forming a frozen mantle some 155 km thick. Regretfully, the mean density of Io cannot be matched by the solid composition reported here. Perhaps this satellite has a molten interior.  相似文献   

2.
Experimental results on fast ion collision with icy surfaces having astrophysical interest are presented. 252Cf fission fragments projectiles were used to induce ejection of ionized material from H2O, CO2, CO, NH3, N2, O2 and Ar ices; the secondary ions were identified by time-of-flight mass spectrometry. It is observed that all the bombarded frozen gas targets emit cluster ions which have the structure XnR±, where X is the neutral ice molecule and R± is either an atomic or a molecular ion. The shape of the positive or negative ion mass spectra is characterized by a decreasing yield as the emitted ion mass increases and is generally described by the sum of two exponential functions. The positive ion water ice spectrum is dominated by the series (H2O)nH3O+ and the negative ion spectrum by the series (H2O)nOH and (H2O)nO. The positive ion CO2 ice spectrum is characterized by R+ = C+, O+, CO+, O2+ or CO2+ and the negative one by R = CO3. The dominant series for ammonia ice correspond to R+ = NH4+ and to R = NH2. The oxygen series are better described by (O3)nOm+ secondary ions where m = 1, 2 or 3. Two positive ion series exist for N2 ice: (N2)nN2+ and (N2)nN+. For argon positive secondary ions, only the (Ar)nAr+ series was observed. Most of the detected molecular ions were formed by one-step reactions. Ice temperature was varied from ∼20 K to complete sublimation.  相似文献   

3.
Mark J. Lupo  John S. Lewis 《Icarus》1979,40(2):157-170
Using published laboratory data for H2O ice, we have developed a modeling technique by which the bulk density, density and temperature profile, rotational moment of inertia, central pressure, and location of the rock-ice interface can all be obtained as a function of the radius, the heliocentric distance, and the silicate composition. Models of the interiors of Callisto, Ganymede, Europa, Rhea, and Titan are given, consistent with present mass and radius data. The radius and mass of spheres of ice under self-gravitation for two different temperature classes are given (103 and 77°K). Measurements of mass, radius, and I/MR2 by spacecraft can be interpreted by this model to yield substantial information about the internal structure and the ice: rock ratio of the icy satellites of Jupiter and Saturn.  相似文献   

4.
We present infrared absorption studies on the effects of 50-100 keV Ar+ and 100 keV H+ ion irradiation of water ice films at 20-120 K. The results support the view that energetic ions can produce hydrogen peroxide on the surface of icy satellites and rings in the outer Solar System, and on ice mantles on interstellar grains. The ion energies are characteristic of magnetospheric ions at Jupiter, and therefore the results support the idea that radiolysis by ion impact is the source of the H2O2 detected on Europa by the Galileo infrared spectrometer. We found that Ar+ ions, used to mimic S+ impacts, are roughly as efficient as H+ ions in producing H2O2, and that 100 keV H+ ions can produce hydrogen peroxide at 120 K. The synthesized hydrogen peroxide remained stable while warming the ice film after irradiation; the column density of the formed H2O2 is constant until the ice film begins to desorb, but the concentration of H2O2 increases with time during desorption because the water sublimes at a faster rate. Comparing the shape of the 3.5-μm absorption feature of H2O2 to the one measured on Europa shows excellent agreement in both shape and position, further indicating that the H2O2 detected on Europa is likely caused by radiolysis of water ice.  相似文献   

5.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

6.
M.H. Moore  R.L. Hudson 《Icarus》2007,189(2):409-423
Spectra of Europa, Ganymede, and Callisto reveal surfaces dominated by frozen water, hydrated materials, and minor amounts of SO2, CO2, and H2O2. These icy moons undergo significant bombardment by jovian magnetospheric radiation (protons, electrons, and sulfur and oxygen ions) which alters their surface compositions. In order to understand radiation-induced changes on icy moons, we have measured the mid-infrared spectra of 0.8 MeV proton-irradiated SO2, H2S, and H2O-ice mixtures containing either SO2 or H2S. Samples with H2O/SO2 or H2O/H2S ratios in the 3-30 range have been irradiated at 86, 110, and 132 K, and the radiation half-lives of SO2 and H2S have been determined. New radiation products include the H2S2 molecule and HSO3, HSO4, and SO2−4 ions, all with spectral features that make them candidates for future laboratory work and, perhaps, astronomical observations. Spectra of both unirradiated and irradiated ices have been recorded as a function of temperature, to examine thermal stability and phase changes. The formation of hydrated sulfuric acid in irradiated ice mixtures has been observed, along with the thermal evolution of hydrates to form pure sulfuric acid. These laboratory studies provide fundamental information on likely processes affecting the outer icy shells of Europa, Ganymede, and Callisto.  相似文献   

7.
It is suggested that Phaethon — a hypothetical planet whose breakup gave rise to the asteroid belt — has a structure similar to that of Callisto, and thus consisted of a rocky core (40%; in mass) and an ice envelope (60%). Total breakup of the planet becomes possible in an explosition of the electrolysis products accumulated in the ice in the form of a solid solution if the planet mass M 0.5 M. Assuming M = 0.5 M we obtain 1750 km for the planet's radius with the envelope's thickness of 750km. Application of the hydrodynamic theory of detonation to the (2H2 + O2) solution in ice reveals that depending on the actual critical temperature which for conventional explosives lies in the range 700–900 K the minimum (2H2 + O2) concentration in ice required for its explosion is 13–18%;.  相似文献   

8.
Despite several spacecraft encounters and numerous groundbased investigations, we still do not know much about Jupiter's deep atmosphere; in fact, the Galileo probe results were so different than anyone had anticipated, that we understand even less about this planet's atmosphere now than before the Galileo mission. We formulate four basic questions in Section 1.3, which, if solved, would help to better understand the chemistry and dynamics in Jupiter's atmosphere. We believe that three out of the four questions (explanation of NH3 altitude profile, characterization of hot spots, altitude below which the atmosphere is uniformly mixed) may be solved from passive sounding of Jupiter's deep (∼ tens of bars) atmosphere via a radio telescope orbiting the planet. Question nr. 4 (the water abundance in Jupiter's deep atmosphere) has been singled out by the Solar System Exploration Decadal Survey as a key question, since the water abundance in Jupiter's deep atmosphere is tied in with planet formation models. In this paper we investigate the sensitivity of microwave retrievals to the composition of Jupiter's deep atmosphere, in particular the water abundance. Based upon present uncertainties in the ammonia abundance and other known and unknown absorbers, including uncertainties in clouds (density and index of refraction), and uncertainties in the thermal structure and lineshape profiles, we conclude that the retrieval of water at depth from microwave spectra (disk-averaged and locally) will be highly uncertain. We show that, if the H2O lineshape profile would be accurately known (laboratory data are needed!), an atmosphere with a near-solar H2O abundance can likely be distinguished from one with an abundance of 10-20×solar O based upon the difference in their microwave spectra at wavelengths ?50 cm. This would be sufficient to distinguish between some proposed scenarios by which Jupiter acquired its inventory of volatile elements heavier than helium. If, in addition, limb-darkening measurements are obtained (again, the H2O lineshape profile should be known), tighter constraints on the H2O abundance can be obtained (see also Janssen et al., 2004, this issue).  相似文献   

9.
In this review we provide the data needed to interpret remote spectroscopic studies of O2 molecules embedded in the icy surfaces of outer solar system bodies. O2 produced by radiolysis has been seen in the gas phase and as the so-called ‘solid O2’ trapped in the icy surfaces of Ganymede, Europa and Callisto. It may also have been indirectly observed on a number of objects by its radiolysis product, O3. These observations indicate the importance of O2 for understanding the chemical processes occurring on icy outer solar system surfaces. Therefore, the published absorption spectra of gaseous, liquid and solid O2 and of O2 embedded in H2O ice are reviewed in some detail. Particular emphasis has been placed on the presentation of transition probabilities for the various O2 spectral series so that their relative importances can be assessed when they are used for modelling the radiation chemistry occurring in such environments.  相似文献   

10.
K. Nagel 《Icarus》2004,169(2):402-412
The recently measured dimensionless moment of inertia (MoI) factor for Callisto of 0.3549±0.0042 (Anderson et al., 2001, Icarus, 153, 157-161) poses a problem: its value cannot be explained by a model in which Callisto is completely differentiated into an ice shell above a rock shell and an iron core such as its neighboring satellite Ganymede nor can it be explained by a model of a homogeneous, undifferentiated ice-rock satellite. We show that Callisto may be incompletely differentiated into an outer ice-rock shell in which the volumetric rock concentration is close to the primordial one at the surface and decreases approximately linearly with depth, an ice mantle mostly depleted of rock, and an about 1800 km rock-ice core in which the rock concentration is close to the close-packing limit. The ice-rock shell thickness depends on uncertain rheology parameters and the heat flow and can be roughly 50 to 150 km thick. We show that if Callisto accreted from a mix of metal bearing rock and ice and if the average size of the rocks was of the order of meters to tens of meters, then Callisto may have experienced a gradual, but still incomplete unmixing of the two components. An ocean in Callisto at a depth of 100-200 km is difficult to obtain if the ice is pure H2O and if the ice-rock lithosphere is 100 km or more thick; a water ocean is more plausible for ice contaminated by ammonia, methane or salts; or for pure H2O at a depth of 400-600 km.  相似文献   

11.
张承志 《天文学进展》2001,19(2):151-155
木星的四颗大卫星都是同步轨旋卫星,常被称为伽利略卫星,美国发射的伽利略飞船自1995年12月抵达木星系统后,的几年来对木星的四颗伽利略卫星进行了一系列的探测,利用飞船探测的最新资料作为约束条件,建立了伽利略卫星的一组内部结构模型,然后按照同步轨旋卫星的形态理论公式计算了它们的平衡形太参数及潮汐耗散因子等。  相似文献   

12.
Xiaoning Pan 《Icarus》2004,172(2):521-525
Hydrogen peroxide (H2O2) is one of the minor constituents of the water ice covered surfaces of the jovian satellites Europa, Ganymede, and Callisto. Here we demonstrate that H2O2 production may be initiated by the dissociative electron attachment (DEA) of low-energy electrons (LEEs) to water molecules. Electronic excitation or ionization by electrons also contributes to H2O2 formation at higher electron energies. Finally, we show that hydroperoxyl (HO2) radicals could be formed on the surfaces of icy satellites by LEE impact.  相似文献   

13.
O.L. Kuskov  V.A. Kronrod 《Icarus》2005,177(2):550-569
Models of the internal structure of completely differentiated Europa and partially differentiated Callisto have been constructed on the basis of Galileo gravity measurements, geochemical constraints on composition of ordinary and carbonaceous chondrites, and thermodynamic data on the equations of state of water, high-pressure ices, and meteoritic material. We assume thermal and mechanical equilibrium for the interiors of the satellites. A geophysically and geochemically permissible thickness of Europa's outer water-ice shell lies between 105 and 160 km (6.2-9.2% of total mass). Our results show that the bulk composition of the rock-iron core of Europa may be described by material approaching the L/LL-type chondrites in composition, but cannot be correlated either with the material of CI chondrites or H chondrites. For Europa's L/LL-chondritic models, core radii are estimated to be 470-640 km (5.3-12.5% of total mass). The allowed thickness of Europa's H2O layer ranges from 115±10 km for a differentiated L/LL-type chondritic mantle with a crust to 135±10 km for an undifferentiated mantle. We show that Callisto must only be partially differentiated into an outer ice-I layer, a water ocean, a rock-ice mantle, and a rock-iron core (mixture of anhydrous silicates and/or hydrous silicates + FeFeS alloy). We accept that the composition of the rock-iron material of Callisto is similar to the bulk composition of L/LL-type chondritic material containing up to 10-15% of iron and iron sulfide. Assuming conductive heat transfer through the ice-I crust [Ruiz, 2001. The stability against freezing of an internal liquid-water ocean on Gallisto. Nature, 412, 409-411], heat flows were estimated and the possibility of the existence of a water ocean in Callisto was evaluated. The liquid phase is stable (not freezing) beneath the ice crust, if the heat flow is between 3.3 and 3.7 mW m−2, which corresponds to the heat flow from radiogenic sources. The thickness of the ice-I crust is 135-150 km, and that of the underlying water layer, 120-180 km. The results of modeling support the hypothesis that Callisto may have an internal liquid-water ocean. The allowed total (maximum) thickness of the outer water-ice shell is up to 270-315 km. Rock-iron core radii, depending on the presence or absence of hydrous silicates, do not exceed 500-700 km, the thickness of an intermediate ice-rock mantle is not less than 1400 km, and its density is in the range of 1960-2500 kg m−3. The surface temperature of Callisto is expected to be 100-112 K. The total amount of H2O in Callisto is found to be 49-55 wt%. The correspondence between the density and moment of inertia values for bulk ice-free Io, rock-iron core of ice-poor Europa, and rock-iron cores of Ganymede and Callisto shows that their bulk compositions may be, in general, similar and may be described by the composition close to a material of the L/LL-type chondrites with the (Fetot/Si) weight ratios ranging from 0.9 to 1.3. Planetesimals composed of these types of ordinary chondrites could be considered as analogues of building material for the rock-iron cores of the Galilean satellites. Similarity of bulk composition of the rock-iron cores of the inner and outer satellites implies the absence of iron-silicon fractionation in the protojovian nebula.  相似文献   

14.
This work reports theoretical infrared and electronic absorption spectra of formaldehyde and its ions in gas phase and H2O ice at different levels of theory. The vibrational frequencies from this work at B3LYP/6-311++G** level are in agreement with the experimental determinations. The gas phase dipole moment of neutral formaldehyde 2.4 D is in excellent agreement with the experimental value of 2.33 D. An influence of ice on vibrational frequencies of neutral formaldehyde molecule was obtained using Self Consistence Isodensity Polarizable Continuum Model (SCI-PCM) with dielectric constant 78.5. Significant shift in vibrational frequencies for neutral formaldehyde molecule when studied in H2O ice and upon ionization is observed. All the vibrational modes in cation and anion of formaldehyde in gas phase are red shifted than the corresponding modes in neutral formaldehyde. Two vibrational modes are blue shifted and all other modes are red shifted for neutral formaldehyde in H2O ice. Time dependent density functional theory (TDDFT) is used to study electronic absorption spectrum of neutral formaldehyde and its charged states. It is found that like neutral formaldehyde, its cation and anion also display strong σσ electronic transitions in vacuum and far UV regions. This study should help in detecting formaldehyde molecule and its ions in gas phase and in H2O ice in different astronomical environment.  相似文献   

15.
Hydrated magnesium sulfate salts have been proposed as major components of the disrupted, reddish terrains on the surface of Europa. This is based on near-infrared reflectance spectra which contain distorted and asymmetric water absorption features typical of moderately hydrated materials such as hexahydrite (MgSO4⋅6H2O) and epsomite (MgSO4⋅7H2O). Hydrated magnesium sulfates having many waters of hydration could produce improved spectral matches. Here we present cryogenic laboratory spectra of highly hydrated sulfur-bearing salts, including hexahydrite, epsomite, bloedite (Na2Mg(SO4)2⋅4H2O), mirabilite (Na2SO4⋅10H2O), sodium sulfide nonahydrate (Na2S⋅9H2O), supersaturated MgSO4, NaHCO3, and Na2SO4 brines, and magnesium sulfate dodecahydrate (MgSO4⋅12H2O). All have been measured under conditions of pressure and temperature appropriate to the surface environment of Europa. Novel methods for preparation, verification and analysis of MgSO4⋅12H2O, which is not stable at standard temperature and pressure (STP), are described. At 100 K, all of these materials exhibit distorted and asymmetric absorption features similar to those in the Europa observations, as well as several weaker, narrow absorptions having widths ranging from 15 to 80 nm. While the agreement with Galileo NIMS observations of dark terrains on Europa is indeed better for highly hydrated salts than for salts of lower hydration states, we conclude that none of these materials alone can account for all of the observed spectral character. As previously suggested, Europa's reddish material appears to be a complex mixture of sulfate hydrates and other materials.  相似文献   

16.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.  相似文献   

17.
The Galileo probe entered the jovian atmosphere at the southern edge of a 5-micron hot spot, one of typically 8-10 quasi-evenly-spaced longitudinal areas of anomalously high 5-micron IR emission that reside in a narrow latitude band centered on +7.5 degrees. These hot spots are characterized primarily by a low abundance of the cloud particles that dominate the 5-micron opacity at other locations on the planet, and by significant desiccation of ammonia, water and hydrogen sulfide in the upper layers of the troposphere. Ortiz et al. [1998. Evolution and persistence of 5-micron hot spots at the Galileo probe entry latitude. J. Geophys. Res. 103, 23,051-23,069] found that the latitude and drift rate of the hot spots could be explained if they are formed by an equatorially trapped Rossby wave of meridional degree 1 moving with a phase speed between 99 and 103 m s−1 relative to System III. Here we model additional properties of the hot spots in terms of the amplitude saturation of such a wave propagating in the weakly stratified deep troposphere. We identify the hot spots with locations where the wave plus mean thermal stratification becomes marginally stable. In these locations, potential temperature isotherms stretch downward to very deep levels in the troposphere. Since fluid parcels follow these isotherms under adiabatic flow conditions, the parcels dive downward when they enter the portion of the wave associated with the hot spot and soar upward upon leaving the spot. We show that this model can account for the anomalous vertical profiles of NH3, H2O, and H2S mixing ratio measured by the Galileo probe. Pressures vary by as much as 20 bar over potential temperature isotherms in solutions that produce sufficient desiccation of water and H2S in hot spots. Approximately 6×10−2 of Jupiter's internal heat flux must be tapped to maintain the wave over the mean hot spot lifetime of 107 s. The results suggest that the phenomenon that causes hot spots may occur widely, although in less dramatic form, across Jupiter's surface, and consequently NH3, H2S, and H2O mixing ratio profiles may vary significantly from location to location in Jupiter's troposphere.  相似文献   

18.
The near infrared spectral reflectance of pure CH4, CO2, H2O, H2S, NH3 and NH4SH frosts has been measured. Comparison with recent Galilean satellite spectra indicates that H2O at approximately 150°K and with about 0.01 cm grain size is the major component on the surface of JII (Europa) and JIII (Ganymede); upper limits for the remaining frosts range from 5 to 28%. Materials other than these frosts must be present on the surface of JI (Io) and JIV (Callisto).  相似文献   

19.
Observations of the Europa environment using the Cassini UltraViolet Imaging Spectrograph (UVIS) show the presence of an extended atomic oxygen atmosphere in addition to the bound molecular oxygen atmosphere first detected by Hubble Space Telescope in 1994 [D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, 1995, Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature 373, 677-679]. The atomic oxygen measurement provides a direct constraint on the sputtering and loss of Europa's water ice surface and the interaction of Europa's atmosphere with Jupiter's magnetosphere. We derive a loss rate for O2 based on the emission rate of the OI 1356 Å multiplet. UVIS detected substantial variability in the oxygen emission from Europa's oxygen atmosphere that we attribute to the viewing geometry. B.H. Mauk, D.G. Mitchell, S.M. Krimigis, E.C. Roelof, C.P. Paranicas [2003, Energetic neutral atoms from a trans-Europa gas torus at Jupiter, Nature 421, 920-922] inferred the presence of a torus of neutral gas at Europa's orbit based on Cassini's energetic neutral atom (ENA) image of the Jupiter system acquired with the Magnetospheric Imaging Instrument (MIMI), with the most likely torus constituents being hydrogen and oxygen species sputtered from Europa. Cassini UVIS data rule out O and O2 as the possible torus species reported by Mauk et al. however, unless the torus density is so low that it is undetectable by UVIS (less than 8 atoms / cm3). The UVIS observations indicate the presence of atomic hydrogen and possibly other species, but a full analysis is deferred to a following paper. The hydrogen in the present observations shows a local-time asymmetry and complex spatial distribution.  相似文献   

20.
This paper focuses on tenuous dust clouds of Jupiter's Galilean moons Europa, Ganymede and Callisto. In a companion paper (Srem?evi? et al., Planet. Space Sci. 51 (2003) 455-471) an analytical model of impact-generated ejecta dust clouds surrounding planetary satellites has been developed. The main aim of the model is to predict the asymmetries in the dust clouds which may arise from the orbital motion of the parent body through a field of impactors. The Galileo dust detector data from flybys at Europa, Ganymede and Callisto are compatible with the model, assuming projectiles to be interplanetary micrometeoroids. The analysis of the data suggests that two interplanetary impactor populations are most likely the source of the measured dust clouds: impactors with isotropically distributed velocities and micrometeoroids in retrograde orbits. Other impactor populations, namely those originating in the Jovian system, or interplanetary projectiles with low orbital eccentricities and inclinations, or interstellar stream particles, can be ruled out by the statistical analysis of the data. The data analysis also suggests that the mean ejecta velocity angle to the normal at the satellite surface is around 30°, which is in agreement with laboratory studies of the hypervelocity impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号