首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Continental Shelf Research》2008,28(18):2574-2583
Horizontal distribution patterns of jack mackerel Trachurus japonicus larvae were investigated extensively in the East China Sea (ECS) along the shelf-break region between 26° and 30°N during February–March based on fine-scale larval sampling in 2002 and 2003. A total of 2363 T. japonicus ranging from 1.2 to 12.4 mm body length (BL) were collected at 310 bongo net sampling stations, of which larvae <10 mm BL accounted for 99.1%. In both years, newly hatched larvae (<3 mm BL) were concentrated in the shelf-break region mainly in the southern part of ECS between 26° and 27°N in warm water of 21–23 °C, suggesting that their primary spawning ground existed in and around this area. With growth, larvae were transported in two different directions, i.e., northward and northeastward, corresponding closely with the direction of the Kuroshio Branch Current north of Taiwan (KBCNT) and the Kuroshio, respectively. Replicate sampling cruises at 2 week intervals were conducted in 2003, and the larval distribution pattern changed significantly between the sampling cruises, suggesting that the transport process fluctuates over relatively short periods in relation to oceanographic processes. The transport speed by the KBCNT was estimated to be 0.13–0.28 knots based on the larval distribution, which is one order of magnitude slower than that by the Kuroshio (1.5–3 knots). Habitat temperature gradually declined with growth in both the Kuroshio and KBCNT, but in the KBCNT it was 1–2 °C lower than in the Kuroshio. Our results suggest that the two different larval transport processes lead to a significant difference in the transport route, habitat conditions (such as temperature and food), and site where young fish recruit to the demersal habitat, which will result in different survival and recruitment processes.  相似文献   

2.
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.  相似文献   

3.
From May to June 2014, the geochemical characteristics of dissolved barium(Ba) in sea water and its influx from the Kuroshio into the East China Sea(ECS) were studied by investigation of the Kuroshio mainstream east of Taiwan Island and the adjacent ECS. This allowed for the scope and extent of the Kuroshio incursion to be quantitatively described for the first time by using Ba as a tracer. The concentration of Ba in the Kuroshio mainstream increased gradually downward from the surface in the range 4.91–19.2 μg L.1. In the surface layer of the ECS, the Ba concentration was highest in coastal water and gradually decreased seaward, while it was higher in coastal and offshore water but lowest in middle shelf for bottom layer. The influx of Ba from Kuroshio into the ECS during May to October was calculated to be 2.19×108 kg by a water exchange model, in which the subsurface layer had the largest portion. The distribution of Ba indicated that Kuroshio upwelled in the sea area northeast of Taiwan Island. The north-flowing water in the Taiwan Strait restrained the incursion of Kuroshio surface water onto the ECS shelf, while Kuroshio subsurface water gradually affected the bottom of the ECS from outside. The results of end member calculation, using Ba as a parameter, showed that the Kuroshio surface water had little impact on the ECS, while the Kuroshio subsurface water formed an intrusion current by climbing northwest along the bottom of the middle shelf from the sea area northeast of Taiwan Island into the Qiantang Estuary, of which the volume of Kuroshio water was nearly 65%. Kuroshio water was the predominant part of the water on the outer shelf bottom and its proportion in areas deeper than the 100 m isobath could reach more than 95%. In the DH9 section(north of Taiwan Island), Kuroshio subsurface water intruded westward along the bottom from the shelf edge and then rose upward(in lower proportion). Kuroshio water accounted for 95% of the ocean volume could reach as far as 122°E. Ba was able to provide detailed tracing of the Kuroshio incursion into the ECS owing to its geochemical characteristics and became an effective tracer for revealing quantitative interactions between the Kuroshio and the ECS.  相似文献   

4.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   

5.
A total of 92,934 fish larvae representing 19 families were sampled monthly from the Sangga Kecil estuary (Matang Mangrove Forest Reserve) and adjacent coastal waters from May 2002 to October 2003. Larval fish assemblages were numerically dominated by Gobiidae (50.1%) and Engraulidae (38.4%). Canonical Correspondence Analysis (CCA) revealed that the larval fish assemblages, including their ontogenetic stages, differed between the mangrove estuary and adjacent offshore waters, and that salinity, turbidity and zooplankton food are the major environmental factors structuring the larval fish assemblages. Estuarine preflexion gobiid larvae were ubiquitous in the coastal and estuarine waters. Larval stages of euryhaline species that were spawned in offshore waters, such as Engraulidae and Clupeidae, were largely advected into mangrove areas at the postflexion stages. Larvae of other euryhaline fishes (Sciaenidae, Blenniidae and Cynoglossidae) that may have been spawned inside the estuary were, however, exported to offshore waters. Given that the collective number of juvenile and adult fish families in the Matang estuary was 53, while the number of larval families was only 17, the former is quite disconnected from the existing larval fish population in the estuary.  相似文献   

6.
Ichthyoplankton and mesozooplankton were sampled and fluorescence and physical environmental variables were measured off the NW and N Iberian Peninsula coasts, during April 2005. A total of 51 species of fish larvae, belonging to 26 families, were recorded. Sardina pilchardus, with 43.8% and 58.7% of the total fish egg and larval catches, respectively, dominated the ichthyoplankton assemblage. The study area was divided by a cross-shelf frontal structure into two hydrographic regions that coincided with the Atlantic and Cantabrian geographic regions. Ichthyoplankton abundance was higher in the Cantabrian region while larval diversity was higher in the Atlantic region. This was the main alongshore variability in the structure of the larval fish assemblage. Nevertheless, the stronger variability, related with the presence of a shelf-slope front, was found in the central-eastern Cantabrian region where two major larval fish assemblages, an “outer” and a “coastal”, were distinguished. The Atlantic region, where the shelf-slope front was not found, was inhabited by a single larval fish assemblage. Canonical correspondence analysis revealed that, off the NW and N Iberian Peninsula coasts, the horizontal distribution of larval fish species in early spring may be explained by a limited number of environmental variables. Of these, the most important were the physical variables depth and sea surface temperature.  相似文献   

7.
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27°S and 39°S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33°S to the shelf break at 36°S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Río de la Plata. Winter TS diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW–TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T∼16 °C) salinity minimum layer at 40–50 m depth, created by SASW–STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis.  相似文献   

8.
The seasonal variations of the Kuroshio intrusion pathways northeast of Taiwan were investigated using observational data from satellite-tracked sea surface drifters and a numerical particle-tracking experiment based on a high-resolution numerical ocean model. The results of sea surface drifter data observed from 1989 to 2013 indicate that the Kuroshio surface intrusion follows two distinct pathways: one is a northwestward intrusion along the northern coast of Taiwan Island, and the other is a direct intrusion near the turn of the shelf break. The former occurs primarily in the winter, while the latter exists year round. A particle-tracking experiment in the high-resolution numerical model reproduces the two observed intrusion paths by the sea surface drifters. The three-dimensional structure of the Kuroshio intrusion is revealed by the model results. The pathways, features and possible dynamic mechanisms of the subsurface intrusion are also discussed.  相似文献   

9.
Why does the Kuroshio northeast of Taiwan shift shelfward in winter?   总被引:2,自引:0,他引:2  
Observations indicate that off the northeastern coast of Taiwan a branch of the Kuroshio intrudes farther northward in winter onto the shelf of the East China Sea. We demonstrate that this seasonal shift can be explained solely by winter cooling. Cooling produces downslope flux of dense shelf water that is compensated by shelfward intrusion. Parabathic isopycnals steepen eastward in winter and couple with the cross-shelf topographic slope (the “JEBAR” effect) to balance the enhanced intrusion. The downslope flow also increases vortex stretching and decreases the thickness of the inertial boundary layer, resulting in a Kuroshio that shifts closer to the shelf break.  相似文献   

10.
East China Sea (ECS) is bounded by the continent where the fourth largest river of Changjiang discharges large amounts of freshwater to the west and by the Kuroshio in the East and connected to the South China Sea via Taiwan Strait, therefore water characteristics are very complex and undergo great seasonal changes. The dominant source waters in the ECS are found to be Kuroshio Surface Water (KSW), Kuroshio Sub-surface Water (KSSW), Changjiang Diluted Water (CDW), and Taiwan Strait Warm Water (TSWW). Optimum multiparameter analysis (OMP) using temperature, salinity and 226Ra were applied to quantify the contribution of individual source water to the surface water of the ECS in summer. The successful application of radium isotope in OMP analysis demonstrates the usefulness of 226Ra in the discrimination of mixing among multiple water sources. In 1987, one interesting phenomenon was that the KSSW entered the surface with the upwelling at the margin of continental shelf, and affected the coastal water obviously. In 1999, the TSWW extended northward continuously up to the Changjiang Estuary.  相似文献   

11.
Application of an individual-based particle tracking model to the migration of tropical fish larvae along the continental shelf between the Houtman Abrolhos Islands and Rottnest Island (Western Australia) has shown that there is potential for the southwards advection of passive particles/larvae in the Leeuwin Current system throughout the year. However, seasonal variations in the prevailing wind field result in corresponding seasonal changes in the surface current flow (both alongshore and cross-shelf) on the continental shelf, leading to a pulse of modelled particles arriving at Rottnest Island during the autumn months. This matches, within a month, the observed April/May peak in annual recruitment of 2 species of damselfish (Abudefduf sexfasciatus and A. vaigiensis), at the time when the Leeuwin Current is strengthening. It is assumed that the larvae are in the uppermost 20 m of the water column and that there are no vertical diurnal movements.The model has a 10 km grid spacing, and so can resolve some of the current gradients across the continental shelf. Comparison of the modelled near-surface currents with ADCP measurements at 2 current mooring sites as well as with a broader range of historical current measurements off south-western Australia indicates that the alongshore net transport is reasonably well reproduced by the model, whereas agreement with the cross-shelf flow is not as good (this may be partly attributed to the paucity of high-quality near-surface current measurements in the area of study). Because of limitations in our knowledge of the swimming ability, choice of swimming direction and habitat selection of larval fish, as well as the inability of the model to reproduce the small-scale circulation around Rottnest Island, the swimming capacity of the late-stage larval fish is not specifically included; they are considered as potential settlers once they have reached within 20 km of the Island.The observed inter-annual variability in recruitment is not as well matched by the model as is the seasonal pattern, but this is almost certainly due to uncertainties in biological factors such as spawning strength, food and predation en route, which are not known.The modelled results are also applied to a more general discussion of the transport of eggs and larvae of commercial fish and invertebrate species on the Western Australian continental shelf, and it is shown that the seasonality and position on the shelf of the spawning may play a large role in the movement (and hence survival and ultimate recruitment) of different species.  相似文献   

12.
Evolution of an anticyclonic eddy southwest of Taiwan   总被引:8,自引:1,他引:7  
Satellite images of sea-surface temperature, surface chlorophyll a concentration, and sea-level anomaly, together with ocean reanalysis data of Asia and Indian–Pacific Ocean (AIPOcean1.0), are utilized to study the three-dimensional characteristics and evolution of an anticyclonic warm eddy adjacent to the southwest coast of Taiwan during October and November 2006. Originated from the Kuroshio intrusion in the Luzon Strait, but unlike previously found westward moving anticyclonic eddies (AE) in the northeastern South China Sea, this AE was so close to the Taiwan coast and stayed where it was formed for over 1 month until it dissipated. Energy analysis is utilized to study the evolution process of the AE, and it shows that the barotropic instability (BTI) and baroclinic instability introduced by the Kuroshio intrusion flow appear to be the main energy sources for the AE. Periodical enhancement/relaxation of local northeasterly monsoon and its associated negative wind stress curl modify the current patterns in this region, reinforce the intraseasonal variability of the Kuroshio intrusion flow, and act together with Kuroshio to form the AE. Eddies detected from AIPOcean1.0 data also show that AEs are most likely to be generated southwest of Taiwan during the transition period of summer monsoon to winter monsoon, and generally, the BTI of Kuroshio intrusion contributes more than the direct wind stress work to the increase of the eddy kinetic energy for the generation and growth of the AEs.  相似文献   

13.
The present paper reports on temporalmesoscale (weeks) changes in physical and biological coupling in the cross-frontal area off the coast of Catalonia in Spain (NW Mediterranean) during the spring transition period. The effect of short-term physical variability on the spatio-temporal heterogeneity of phytoplankton biomass and in the area of overlap of the larvae of fish species dwelling on the shelf and slope is discussed. Our results indicate that the region off the Catalan coast is a dynamically active area during the spring transition period. Short-term spatio-temporal variability in the frontal system brought about significant changes in the extension of shelf and slope waters, giving rise to major changes in the spatial distribution patterns of chlorophyll and fish larvae. The relationship between integrated chlorophyll, surface chlorophyll and DCM (Deep Chlorophyll Maximum) showed important variability in a short time period. The area of overlap of the larvae of shelf and slope fish species was broad when the front was located offshore, compared to nearly complete segregation of shelf and oceanic fish larvae when the front moved inshore near the coast.  相似文献   

14.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

15.
The Kuroshio inflow northeast of Taiwan Island plays an important role in the heat and nutrient balances over the East China Sea(ECS). Based on merged satellite altimeter data and the PCM-1 mooring observation at the East Taiwan Channel(ETC), the study employs a correlation iteration scheme to find the optimal transport index for the Kuroshio inflow. The sea level difference with the highest correlation to the ETC transport is across the ECS shelf break rather than along the PCM-1 line. The counter-intuitive result is caused by large signal noise and poor track coverage of altimeters near the Taiwan coast. The optimal altimetric index is highly correlated with the two-year in-situ measurements as well as the ten-year output of the global assimilation model. It serves as a better estimator of Kuroshio inflow than those using tidal gauge data, and helps pinpoint a 5 cm mismatch of mean sea level in the Keelung tidal record. The mean transport of Kuroshio inflow based on the twenty-year altimetric index is 20.55 Sv with a standard deviation of 3.05 Sv. Wavelet spectrum of the index reveals that semi-annual period dominates the Kuroshio variation northeast of Taiwan Island.  相似文献   

16.
《Continental Shelf Research》1998,18(9):1039-1056
The detailed three-dimensional structure of the Kuroshio frontal eddy along the shelf edge of the East China Sea is revealed by the CTD, ADCP, and satellite-tracked drifter observations. The length and width of the cold core of the Kuroshio frontal eddy are about 60 and 40 km, respectively, and its phase speed is about 30 cm s-1. The calculated buoy tracks with the use of the observed ADCP data well reproduce the observed tracks of satellite-tracked drifters around the frontal eddy. The observed maximum horizontal velocity around this frontal eddy are 40 cm s-1 and the center of this eddy shifts offshore in the deep layer. Nutrient is advected onshore across the shelf edge by passing of this frontal eddy while it is advected offshore without the frontal eddy at the shelf edge.  相似文献   

17.
The distribution and abundance of thaliaceans were studied in relation to physical and biological variables during summer and winter in the northwest continental shelf of South China Sea. Based on the topography and water mass of the surveyed region, it was divided into three subregions: region I (onshore waters of the east Leizhou Peninsula), region II (onshore waters of the east and southeast Hainan Island) and region III (offshore waters from Leizhou Peninsula to Hainan Island). During summer due to a strong southwest monsoon, a cold eddy and coastal upwelling dominated in regions I and II, respectively, whereas the onshore and offshore waters were vertically mixed during winter due to a strong northeast monsoon. A total of 18 thaliacean species (including 3 subspecies) were collected. The mean species richness was higher in summer compared to winter, with the occurrence of higher values during summer and winter at region II and region III, respectively. The average thaliacean abundance is also higher in summer than in winter, with higher values at region I in summer and no significant difference among three subregions in winter. Doliolum denticulatum and Thalia democratica were the dominant species during summer and winter. The results suggested that the seasonal and spatial distribution of thaliacean richness was considered to be the result of physical factors such as temperature and ocean current in summer and winter. Spatial distribution of thaliacean abundance was affected by chlorophyll a concentration increased by the occurrence of coastal upwelling and cold eddy in summer. Southwest and northeast monsoons are shown to play an important role in shaping the distribution of species richness and abundance of thaliaceans in the northwest continental shelf of South China Sea.  相似文献   

18.
The northern Gulf of California (NGC) is characterized by seasonal hydrography and circulation (cyclonic in summer and anticyclonic in winter), by intense tidal mixing in the midriff archipelago region (MAR), and by coastal upwelling on the eastern side from autumn to spring. We examined changes in larval fish assemblages (LFAs) in relation with hydrography and circulation during both phases of the seasonal circulation, as indicators of changes in the pelagic ecosystem. A canonical correspondence analysis defined LFAs (r>0.70), which were related with: (i) the coastal current on the mainland shelf, (ii) the central eddy and (iii) the MAR. In the early cyclonic phase, when the temperature and stratification were increasing and the coastal current was starting, demersal (Gobulus crescentalis, Lythrypnus dalli) and mesopelagic species (Benthosema panamense) dominated the NGC. The highest larval abundance was in the Current LFA area and the lowest in the MAR LFA area. In the mature cyclonic phase, the larval abundance increased in the NGC and species characteristic of eastern boundary current systems such as Opisthonema libertate and Engraulis mordax displaced the demersal species and became dominant, together with B. panamense in the Current LFA area; the latter species dominated in the Eddy LFA area. In the early anticyclonic phase, the direction of the coastal current reversed and the temperature and larval abundance decreased. E. mordax and B. panamense larvae continued dominating the NGC with higher abundance in the MAR than in the Current and Eddy LFA areas. In the mature anticyclonic phase, E. mordax larvae dominated in the Current and the Eddy LFA areas with the highest abundance in the former, while M. productus larvae (an eastern boundary current species) dominated in the Eddy LFA area. Results showed that in the NGC, the dramatically seasonal and predictable hydrographic and circulation features trigger the seasonal spawning of the dominant species. The biological richness of the coastal current area, in both circulation phases, suggested that this area has an important role in the pelagic ecosystem functionality of the NGC.  相似文献   

19.
Fish may affect macrobenthic communities through trophic interactions and modification of habitat conditions. We compared the density, diversity and taxonomic composition of larval chironomids under low vs high fish impact, created by stocking semi-natural ponds with either young/small common carp Cyprinus carpio at low biomass densities or with high biomass densities of older/large common carp, supplemented by other cyprinids and predatory fish species.Over the study season, May–August, total chironomid abundance was considerably lower in ponds with high fish biomass than in low fish biomass ponds. In July–August larval densities declined significantly, irrespective of the fish status of the ponds. The composition of larval communities diverged between ponds with different fish status. Chironomus riparius and C. plumosus accounted for most of the observed dissimilarity. C. plumosus densities were not affected by the fish status of the pond, constituting on average >38 % of chironomid specimens in both types of ponds. C. riparius was abundant in ponds with low fish biomass (on average 30 %), but rare in ponds with high fish biomass (4 %). Other common taxa were Glyptotendipes pallens (15 % and 13 %, respectively) and Procladius sp. (14 % in ponds with low fish impact). Canonical correspondence analysis showed that fish biomass was more important in determining chironomid community composition than environmental variables indicative of pond eutrophication (total N, P, chlorophyll a and conductivity).Despite adverse effects on total abundance, chironomid diversity was higher under apparently stronger trophic pressure by fish. Fish may have relieved some chironomid species from invertebrate predation and competition with dominant Chironomus larvae. Other important drivers of chironomid assemblage and diversity patterns may include species-specific feeding modes and prey size selectivity of fish, the ability of chironomid larvae to attain size- and depth-refuge from small fish but not larger fish, and differential vulnerability of free-living and tube-dwelling larvae relative to ontogenetic niche shifts of fish.  相似文献   

20.
Here we use a two-layer model to study the dynamics of the intrusion of the Kuroshio onto the continental shelf. Results show that the interaction of the Kuroshio water and shelf water produces a stable upwelling zone above 100 m depth northeast of Taiwan, which provides a dynamical explanation to the presence of the cold core previously observed by satellite. The affected shelf water from the interaction has an onshore portion, which turns right and becomes a northward alongshore flow when it moves closer to shore. This implies that the Kuroshio water cannot penetrate deep onto the inner part of the continental shelf, but it generates a strong northward jet that is formed mainly by the shelf water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号