共查询到20条相似文献,搜索用时 46 毫秒
1.
《Quaternary Science Reviews》2003,22(2-4):319-342
A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77 m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning most of the last 7000 yr. The chronology of sedimentation is based on several lines of evidence, including AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and, for some of the properties measured, is sub-decadal for the last few centuries.The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Appenines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera.The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, U37k′, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated.The combination of methods used and the results obtained illustrate the potential value of such high resolution near-shore marine sedimentary sequences for recording wide-scale human impact, documenting the effects of this on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate. 相似文献
2.
Holocene and late-Pleistocene sedimentation in the Adriatic Sea 总被引:1,自引:0,他引:1
Prof. Dr. L. M. J. U. van Straaten 《International Journal of Earth Sciences》1970,60(1):106-131
The following paper is a summary of sedimentological data on the Adriatic Sea (with the exception of the areas along the Jugoslavian and Albanian coasts). Because it is difficult to summarize a summary, only a few of the main conclusions will be mentioned here.Geophysical investigations indicate that the top of the limestone series, underlying the clayey and sandy deposits of the Pliocene and the Quaternary in the Adriatic area has a very uneven topography. Its greatest depths (4–6 km) are found a) between Ravenna and Rimini, b) between San Benedetto and Pescara, and c) below the Albanian shelf.Recent sands are mainly limited to the littoral zone; pleistocene sand, originally supplied by rivers, covers the greater part of the deeper shelf. Between these zones a terrace-shaped pro-littoral mud belt is present, where the bulk of the recent terrigenous mud is deposited. The maximum rate of accumulation in this belt is probably about 4 1/2 mm per year.The remaining part of the recent mud is transported in the sea water as floccules of such small size that they remain suspended over the deeper zones of the shelf. Most of it is deposited in the basins of the Central Adriatic (maximum accumulation rate for the Holocene on the average circa 1/2 mm per year) and in the bathyal basin in the southeast. The deepest area of the latter basin is formed by an almost horizontal plain (circa 1218 m deep). The longest core from this plain (240 cm of Holocene and 400 cm of late Pleistocene) is composed for roughly 61% of turbidite material, 5% of volcanic ash (coarser than fine silt), 0,2% of organic carbonate remains (coarser than silt) and 34% of normal terrigenous mud. The ash falls were limited to the central and southeastern parts of the Adriatic.
Zusammenfassung Eine kurze Übersicht wird gegeben über die sedimentologische Kenntnis der Adria (mit Ausnahme der jugoslawischen und albanischen Küstengewässer).Geophysikalische Untersuchungen zeigen, daß die Kalkstein-Oberfläche unter den tonig-sandigen Ablagerungen des Pliozäns und des Quartärs, ein starkes Relief besitzt. Sie hat ihre größten Tiefen (4–6 km) a) zwischen Ravenna und Rimini; b) zwischen San Benedetto und Pescara und c) im Untergrund des Albanischen Schelfes.Rezente Sande sind in der Hauptsache auf eine schmale Küstenzone beschränkt. Dagegen haben pleistozäne Residual-Sande, ursprünglich von Flüssen herbeigebracht, eine große Ausdehnung auf dem Schelf. Zwischen diesen beiden sandigen Zonen findet man einen pro-littoralen Schlicksaum, wo die Hauptmasse des rezent ins Meer gebrachten terrigenen Schlickes abgelagert wird. Die maximale Akkumulationsgeschwindigkeit in dieser Zone beträgt wahrscheinlich ungefähr 4 1/2 mm pro Jahr.Der Anteil des terrigenen Schlickes, der nicht in diesem prolittoralen Schlicksaum zur Ablagerung kommt, besteht aus Flocken von so kleinen Abmessungen, daß sie während ihres Transportes über den äußeren Schelf-Regionen suspendiert bleiben. Sie sedimentieren größtenteils in den Becken der Zentral-Adria (mittlere Ablagerungsrate während des Holozäns maximal etwa 1/2 mm pro Jahr) und im bathyalen Becken der Südost-Adria.Der tiefste Teil dieses südöstlichen Beckens wird von einer fast horizontalen Ebene (auf etwa 1218 m Tiefe) eingenommen. Der längste Kern, der in dieser Ebene entnommen wurde (640 cm, wovon 240 cm Holozän), hat ungefähr die folgende Zusammensetzung: 61% Turbidit-Material, 5% vulkanische Asche (Sand- und grobe Schluff-Fraktionen), 0,2% organische Kalkreste (gröber als Schluff) und 34% normaler terrigener Schlick. Die Aschenfälle waren auf die mittleren und südöstlichen Teile der Adria beschränkt.
Résumé L'auteur donne un bref résumé de la connaissance sédimentologique de la Mer Adriatique (à l'exception des parties le long des côtes Jugoslaves et Albanaises).Des recherches géophysiques indiquent que la surface du calcaire couvert par les dépôts argileux-sableux du Pliocène et du Quaternaire a un relief prononcé. Cette surface atteint des profondeurs maximales (4–6 km) a) entre Ravenna et Rimini, b) entre San Benedetto et Pescara et c) au-dessous du plateau continental Albanais.Les dépôts sableux d'âge Holocène sont limités pratiquement à l'étroite zone du littoral. Par contre, des sables pléistocènes résiduels, d'origine fluviale, couvrent de vastes étendues du plateau continental sous-marin. Entre ces deux zones sableuses, on trouve la bande vaseuse «pro-littorale», où se dépose la plus grande partie de la matière vaseuse terrigène, apportée à la mer sous les conditions actuelles. L'accumulation maximale dans cette zone est probablement de l'ordre de 4 1/2 mm par an.La partie de la vase terrigène qui dépasse cette bande pro-littorale est transportée dans la mer à l'état de flocons d'une taille si petite qu'ils restent en suspension au-dessus des parties extérieures du plateau continental. Ils sont déposés surtout dans les bassins de l'Adriatique Centrale (vitesse moyenne d'accumulation pendant l'Holocène au maximum environ 1/2 mm par an), et dans le bassin bathyal du Sud-Est.La partie la plus profonde dans ce dernier bassin est formée par une plaine presqu' horizontale (à environ 1218 m). La carotte la plus longue, tirée de cette plaine (640 cm, dont 240 cm d'Holocène) est constituée approximativement de 61% de matériel turbiditique, de 5% de matière volcanique (fractions de sable et de silt grossier), 0,2% de restes calcaires organiques (plus grossier que du silt) et 34% de vase terrigène normale. Les chutes de matière volcanique étaient limitées aux parties centrales et sud-orientales de l'Adriatique.
— . , . (4–6 ) : a) Ravenna Rimini; ) San Benedetto Pescara ) . , , - , , pro-litto-ralen , . 4,5 . , ( 1/2 ) - . 1218 . , 640 , 240 . : 61% , 5% , 0,2% 34% . - .相似文献
3.
Cecilia T. Satta Sílvia Anglès Esther Garcés Nicola Sechi Silvia Pulina Bachisio Mario Padedda Daniela Stacca Antonella Lugliè 《Estuaries and Coasts》2014,37(3):646-663
The present study identified and quantified dinoflagellate cysts in surface sediments from three Mediterranean lagoons. Sediment samples were recovered from 11 stations in May 2009 at Cabras Lagoon, eight stations in May 2010 at Corru S'Ittiri Lagoon, and five stations in May 2011 at Santa Giusta Lagoon. Fifty-three dinoflagellate cyst morphotypes were identified. Sixteen species are first reports for the lagoons, and two for the Mediterranean Sea. Moreover, a new Scrippsiella species was discovered in Cabras. Seven harmful algal species were identified, primarily belonging to the potentially toxic genus Alexandrium. Total cyst abundance, number of morphotypes, and assemblages varied among lagoons, and each lagoon showed a distinct morphotype composition. A degree of heterogeneity was also detected within lagoon. Cabras and Santa Giusta cyst assemblages were characterised by morphotypes belonging to the autotrophic genus Scrippsiella, whereas Corru S'Ittiri assemblages showed dominance of heterotrophic morphotypes, including Protoperidinium cf tricingulatum. Differentiation among lagoons was also evident according to environmental conditions. Salinity proved to be a fundamental variable in determining total cyst abundance, morphotype number, and composition. This study was among the first to examine dinoflagellate cyst composition in coastal lagoons, especially from the Mediterranean region, and contributed data that increased our knowledge of cyst-producing dinoflagellates in these environments. 相似文献
4.
In the last 10 kyr BP, a coastal depositional wedge formed along the southern Po Plain margin. Shoreline regression accelerated abruptly in the Iron Age, and especially in the last 2 kyr, due to the increased woodland removal on the Apennines. The deposition of the Holocene sedimentary wedge is simulated here, along four coast-tranversal transects, using a finite-element two-dimension mathematical model. The model was constrained using the present topographic surface, the maximum flooding line of the Holocene transgression, architecture and texture of depositional wedge, the location of coastlines, aeolian dunes and ancient offshore delta-sand. The sediment volume required to calibrate the simulations along the sections ranges from about 165,000–870,000 m3 m−1; the maximum tectonic subsidence varies from 0.1 to 0.7 mm yr−1. The minimum sand amount required by the model to stop the accelerated erosion of the Cervia beach is about five times the one employed in recent (April 2002) recovery works. 相似文献
5.
Ferran Estrada Jesús Galindo‐Zaldívar Juan Tomás Vázquez Gemma Ercilla Elia D'Acremont Belén Alonso Christian Gorini 《地学学报》2018,30(1):24-33
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea. 相似文献
6.
Grain size and mineral composition of core sediments were used to investigate influences of various terrestrial and marine conditions, which have prevailed on the southwestern Black Sea shelf during the Holocene. Siliciclastic mud with small amounts of sand and gravel from nearby coastal hinterland is the principal sediment type, whereas sediments deposited near the shelf edge and the Istanbul Strait and off the Duru Lake (a paleo-river mouth) constitued large quantities of sand and gravel of both biogenic and terrigenic origin. Variable amounts of aragonite, 1 nmmicas, quartz, feldspars, calcite and dolomite constitute the dominant non-clay minerals in bulk sediments. The clay mineral assemblage in the 〈 2 μm fraction is made up of smectite, illite, kaolinite and chlorite. Aragonite and calcite are mainly derived from benthic accumulations, whereas feldspars (mainly plagioclase) and smectite reflect magmaticvolcanic provenance and the distribution of 1 nm-micas and chlorite correlate with nearby metamorphic sources onland. Nevertheless, grain size and mineral distribution generally indicate a combination of effects of wind and wave climate, longshore and offshore cyclonic currents, changing sea-level stands and nearby source rock and morphological conditions. It is also suggested that at least part of clay minerals could be derived from the northwesterly Danube River input. 相似文献
7.
8.
S. E. Poulos K. Gaki-Papanastasiou P. Gialouris G. Ghionis H. Maroukian 《Environmental Earth Sciences》2012,66(3):955-966
The present investigation concerns the formation and evolution of the dune field of the central part of the Kyparissiakos Gulf (western coast of Peloponnesos, Greece). This dune field is associated with the Kaiafas lagoon and consists of four dune lines that lie at distances of 600, 200, 100 and 70 m from the coastline. The dune field has developed on top of a barrier beach that formed subsequently to the completion of the last phase of rapid sea level rise, i.e. after 6,000 BP, consisting mostly of medium sand with good sorting, due to its aeolian formation. Assuming a steady wind regime and adequate sediment availability during the late Holocene, a period of approximately 1,350 years has been estimated to be the minimum time required for the formation of the dune field; this formation period may also include intervals when the development processes were more or less intensive. On the basis of radio-carbon dating, secondary fluctuations of air temperature and published information, it is proposed that the 4th (oldest) dune line started forming between the years 400 AD and 1,000 AD, whilst the 1st (youngest) dune line started forming after 1,520 AD. The dune field, especially its youngest line seems to be in equilibrium with its adjacent beach zone and the nearshore hydrodynamics, being beyond the reach of wave run-up. On the other hand, the dune field, over the past decades, has been subjected to intense human intervention (agriculture, construction, forest fires, etc.) that has locally destroyed and/or destabilised part of the dunes. Finally, the expected sea level rise, due to global warming, is undoubtedly a threat to the existence of the dune field. 相似文献
9.
Fabrizio Antonioli Luigi Ferranti Kurt Lambeck Steve Kershaw Vladimiro Verrubbi Giuseppe Dai Pra 《Tectonophysics》2006,422(1-4):23-40
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area. 相似文献
10.
Lindsay L. Vare Guillaume Massé Thomas R. Gregory Christopher W. Smart Simon T. Belt 《Quaternary Science Reviews》2009,28(13-14):1354-1366
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA. 相似文献
11.
The sedimentary succession of piston core RC26-16, dated by 14C accelerator mass spectrometry, provides a nearly continuous palaeoceanographic record of the northeastern South China Sea for the last 15000 yr. Planktic foraminiferal assemblages indicate that winter sea-surface temperatures (SSTs) rose from 18°C to about 24°C from the last glacial to the Holocene. A short-lived cooling of 1°C in winter temperature centred at about 11000 14C yr ago may reflect the Younger Dryas cooling event in this area. Summer SSTs have remained between 27°C and 29°C throughout the record. The temperature difference between summer and winter was about ca. 9°C during the last glacial, much higher than the Holocene value of ca. 5°C. During the late Holocene a short-lived cooling event occurred at about 4000 14C yr ago. Oxygen and carbon isotopic gradients between surface (0–50 m) and subsurface (50–100 m) waters were smaller during the last glacial than those in the Holocene. The fluctuation in the isotopic gradients are caused most likely by changes in upwelling intensity. Smaller gradients indicate stronger upwelling during the glacial winter monsoon. The fauna-derived estimates of nutrient content of the surface waters indicate that the upwelling induced higher fertility and biological productivity during the glacial. The winter monsoon became weaker during the Holocene. The carbonate compensation depth and foraminiferal lysocline were shallower during the Holocene, except for a short-lived deepening at about 5000 14C yr ago. A preservation peak of planktic foraminifera and calcium carbonate occurred between 13400 and 12000 14C yr ago, synchronous to the global preservation event of Termination I. 相似文献
12.
Our study provides detailed information on the Lateglacial landscape and vegetation development of Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300–4500 m asl.), we reconstruct the current state as a function of climate history and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50–15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age. Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses document an increase of erosion starting at 3926 ± 79 cal yr B.P., coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P., demonstrating increased surface activity under the combined effects of human influence and climate deterioration. The onset of peat growth generally depended on local conditions that include relief, meso-climate and in more recent times also on soil compaction due to animal trampling. We distinguish three initiation periods of peat growth: 12,700–10,400 cal yr B.P. for flat basins inside last glacial terminal moraines; 7000–5000 cal yr B.P. for the main valley floors; and 3000–1000 cal yr B.P. for the higher terrace surfaces.The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600–9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800–8300 cal yr B.P.). First signs of nomadic presence appear as early as 7200 cal yr B.P., when temperatures were up to 2 °C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900–2750 cal yr B.P.) the natural vegetation was transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Short-lived cold events (8000, 6200, 3500 cal yr B.P.) impacted on the vegetation only temporarily.As the transformation of the natural Poaceae-rich vegetation into Kobresia-pastures modified the influence of the Tibetan Plateau (“hot plate”) on the monsoon system, our data even point to an early start of a nomadic (!) Anthropocene nearly 6000 years ago. Against the background of a very long grazing history, modern Tibet must be seen as a cultural landscape. 相似文献
13.
Major (Al, Ca, Fe, Mg, Mn, Si) and minor (Cd, Pb, Zn) elements of aeolian dust samples collected onboard ship around Italy were analysed, and the concentrations of metal in the dusts were in good agreement with previously published data from the Mediterranean Sea.
The elemental composition of dust samples collected in four subareas (Adriatic, Ionian, Tyrrhenian, and Sicily Channel) was compared with the composition of marine deep sediments obtained in the same regions: Mn, Al, Cd and Zn contents differentiated between the four areas in both sets of samples, suggesting a possible 'geochemical signature' of the atmospheric crustal contribution in marine deep sediments.
An estimate of the relative contribution of atmospheric dry deposition of Cd, Pb and Zn and riverine discharge indicates that: (a) the metals deposited from the atmosphere to the Adriatic basin are a small fraction (2–5%) of those discharged by the Po and Adige rivers; (b) almost the same amounts of Cd, Pb and Zn are delivered to the Tyrrhenian Sea by the atmosphere and by the Arno and Tiber Rivers. 相似文献
The elemental composition of dust samples collected in four subareas (Adriatic, Ionian, Tyrrhenian, and Sicily Channel) was compared with the composition of marine deep sediments obtained in the same regions: Mn, Al, Cd and Zn contents differentiated between the four areas in both sets of samples, suggesting a possible 'geochemical signature' of the atmospheric crustal contribution in marine deep sediments.
An estimate of the relative contribution of atmospheric dry deposition of Cd, Pb and Zn and riverine discharge indicates that: (a) the metals deposited from the atmosphere to the Adriatic basin are a small fraction (2–5%) of those discharged by the Po and Adige rivers; (b) almost the same amounts of Cd, Pb and Zn are delivered to the Tyrrhenian Sea by the atmosphere and by the Arno and Tiber Rivers. 相似文献
14.
Novichkova Ye. A. Reikhard L. Ye. Lisitzin A. P. Rybalko A. Ye. de Vernal A. 《Doklady Earth Sciences》2017,474(1):607-611
Doklady Earth Sciences - The Holocene sediments from the inner part of the Dvina Bay of the White Sea (core no. 6042) were analyzed with multidisciplinary methods for the first time. The age of the... 相似文献
15.
HENNING A. BAUCH HEIDEMARIE KASSENS HELMUT ERLENKEUSER PIETER M. GROOTES JÖRN THIEDE 《Boreas: An International Journal of Quaternary Research》1999,28(1):194-204
The Holocene depositional setting of the Laptev Sea was studied using three marine sediment cores from water depths between 77 and 46 m. Based on sedimentary parameters (TOC content, δ13 Corg , sedimentation rates) controlled by radiocarbon age models the palaeoenvironment of a strongly coupled river-shelf system was reconstructed since ˜11 ka BP. Caused by a transgressing sea after the last glaciation, all cores reveal progressive decreases in sedimentation rates. Using the sedimentary records of a core from the Khatanga-Anabar river channel in the western Laptev Sea, several phases of change are recognized: (1) an early period lasted until ˜10 ka BP characterized by an increased deposition of plant debris due to shelf erosion and fluvial runoff; (2) a transitional phase with consistently increasing marine conditions until 6 ka BP, which was marked at its beginning near 10 ka BP by the first occurrence of marine bivalves, high TOC content and an increase in δ13 Corg ; (3) a time of extremely slow deposition of sediments, commencing at ˜6 ka BP and interpreted as Holocene sea-level highstand, which caused a southward retreat of the depositional centres within the now submerged river channels on the shelf; (4) a final phase with the establishment of modern conditions after ˜2 ka BP. 相似文献
16.
JEF VANDENBERGHE SJOERD BOHNCKE WIM LAMMERS LIESBETH ZILVERBERG 《Boreas: An International Journal of Quaternary Research》1987,16(1):55-67
Vandenberghe, Jef, Bohncke, Sjoerd, Lammers, Wim & Zilverberg, Liesbeth 1987 03 01: Geomorphology and palaeoecology of the Mark valley (southern Netherlands): geomorphological valley development during the Weichselian and Holocene. Boreas , Vol. 16, pp. 55–67. Oslo. ISSN 0300–9483.
The actual area of the Mark valley is limited by the borders of an Early Weichselian erosion phase. The subsequent accumulation has resulted in the formation of a Weichselian Pleniglacial terrace which has been deeply dissected by Late Glacial erosion. The present alluvial plain is formed by Late Glacial and Holocene infilling. The maximum incision of the Late Glacial fluvial phase was reached slightly before 11,780 B.P. and involved locally dry conditions which have given rise to aeolian activity during this period (Older Dryas). On the deepest parts of the Pleniglacial terrace, a backswamp environment was established until the end of the Alleröd. At the beginning of the Younger Dryas the river invaded the terrace but shortly afterwards aeolian activity progressively increased. At the climax of the Younger Dryas, deep seasonal frost or local permafrost characterized the Mark valley. 相似文献
The actual area of the Mark valley is limited by the borders of an Early Weichselian erosion phase. The subsequent accumulation has resulted in the formation of a Weichselian Pleniglacial terrace which has been deeply dissected by Late Glacial erosion. The present alluvial plain is formed by Late Glacial and Holocene infilling. The maximum incision of the Late Glacial fluvial phase was reached slightly before 11,780 B.P. and involved locally dry conditions which have given rise to aeolian activity during this period (Older Dryas). On the deepest parts of the Pleniglacial terrace, a backswamp environment was established until the end of the Alleröd. At the beginning of the Younger Dryas the river invaded the terrace but shortly afterwards aeolian activity progressively increased. At the climax of the Younger Dryas, deep seasonal frost or local permafrost characterized the Mark valley. 相似文献
17.
18.
Quantitative analyses of planktic foraminifera, sea‐surface temperatures (SSTs), oxygen isotope and radiocarbon dating from a deep‐sea core recovered in the South Adriatic Sea have been used to reconstruct a subcentennial climatic and biochronological record since the late glacial (the last 24 cal. ka BP). The identification and relative abundance of 25 species of planktic foraminifera along the core have provided a continuous record of the faunal changes over this time interval. These results have permitted the establishment of 10 biozones in the South Adriatic Sea based on the appearance and/or disappearance of the main specific taxa, from peaks of abundance and/or by modification in marine conditions. The robust chronology of the South Adriatic core allowed correlation of SST estimates to the GISP2 ice core record, indicating that the main climate changes recorded in Greenland ice cores over the last 24 ka are recorded and globally synchronous with those observed in the South Adriatic Sea. This finding further allows comparison of the planktic foraminifera record with the event stratigraphic scheme proposed by the INTIMATE group in order to better identify the relationship between past climatic changes and the response of microfaunal assemblages in the South Adriatic. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
Neil Roberts 《Geoarchaeology》1991,6(1):1-26
This study investigates the relationship between environmental change and the origins of agriculture in the Near East, with special reference to the Konya and Beysehir-Sušla Basins of south central Anatolia. The Konya Basin, now largely dry, was formerly occupied by an extensive lake, which last attained a high level between 23,000 and 17,000 years ago. It is concluded that there was only an indirect link between the drying up of the former Konya Lake and the appearance of early agricultural (Neolithic) settlements on the floor of the plain. An equally important factor was the creation of new land and water resources which resulted from changes in river regimes and alluvial sedimentation after the end of the Pleistocene. Neolithic sites were not only clustered on water-retentive alluvial soils, but have also been partly buried by Holocene alluviation. The revised site chronology which follows from these geoarchaeological observations has significant implications for the interpretation of the Neolithic settlement system in south central Turkey. 相似文献
20.
Francesca Sangiorgi Lucilla Capotondi Nathalie Combourieu Nebout Luigi Vigliotti Henk Brinkhuis Simona Giunta Andr F. Lotter Caterina Morigi Alessandra Negri Gert‐Jan Reichart 《第四纪科学杂志》2003,18(8):723-732
Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea‐surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2–3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice‐core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献