首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

2.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

3.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

4.
Seasonal patterns in factors that affect primary producers are an important part of defining the structure and function of aquatic ecosystems. However, defining seasonality is often more difficult in aquatic than in terrestrial ecosystems, particularly in subtropical and tropical environments. In this study, a long-term data set for a shallow subtropical lake (Lake George, Florida, USA) was used to investigate seasonality using a range of physical, chemical and hydrological parameters. K-means cluster analysis of monthly averages among 11 selected environmental factors across 18 years suggested the overall annual pattern consists of three different seasonal clusters: a cold season (January–April), a warm season (May–August) and a flushing season (September–December). High dissolved oxygen and increased Secchi depth are key features of the cold season, while the warm season is characterized by high mean light irradiances, temperature, rainfalls, total nitrogen and phytoplankton biomass (as chlorophyll a level). The flushing season is characterized by high river discharge rates and high levels of dissolved nutrients and colored organic matter. Multiple response permutation procedures indicated that these seasonal cluster arrangements were significantly different than randomly permuted clusters (A-statistics = 0.3314, significance of delta = 0.0160, based on 1000 permutations). Results from principal component analyses supported the presence of the three seasons in the lake. Linear models explaining chlorophyll a levels using the 3-season system generally indicated better ratios of explained variance compared to the models without seasonal alignments, further indicating that even for sub-tropical systems defining seasons provides a better understanding of phytoplankton dynamics. The approaches used in this study provide statistically-based multivariate tools for the definition of seasonality in aquatic ecosystems. The ability to accurately define seasons is a key step in modeling the structure and dynamics of aquatic ecosystem, which is essential to the development of effective management strategies in a rapidly changing world.  相似文献   

5.
Pharmaceuticals are common chemical contaminants in estuaries receiving effluent from wastewater and sewage treatment facilities. The purpose of this research was to examine benthic microalgal (BMA) community responses to sublethal exposures to tylosin, a common and environmentally persistent antibiotic. Bioassays, using concentrations of 0.011–218 μmol tylosin l−1, were performed on intertidal muddy sediments from North Inlet Estuary, SC. Exposure to tylosin resulted in a reduction in total BMA biomass and primary productivity. Furthermore, exposure seemed to retard diatom growth while having a minimal effect on cyanobacteria biomass. Estuarine systems receiving chronic inputs of trace concentrations of tylosin, as well as other antibiotics, may experience significant reductions in BMA biomass and primary productivity. Given the well-documented role of BMA in the trophodynamics of estuaries, these impacts will likely be manifested in higher trophic levels with possible impairments of the structure and function of these sensitive systems.  相似文献   

6.
Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2–20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL?1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.  相似文献   

7.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

8.
The mass-induced sea level variability and the net mass transport between Mediterranean Sea and Black Sea are derived for the interval between August 2002 and July 2008 from satellite-based observations and from model data. We construct in each basin two time series representing the basin mean mass signal in terms of equivalent water height. The first series is obtained from steric-corrected altimetry while the other is deduced from GRACE data corrected for the contamination by continental hydrology. The series show a good agreement in terms of annual and inter-annual signals, which is in line with earlier works, although different model corrections influence the consistency in terms of seasonal signal and trend.In the Mediterranean Sea, we obtain the best agreement using a steric correction from the regional oceanographic model MFSTEP and a continental hydrological leakage correction derived from the global continental hydrological model WaterGAP2. The inter-annual time series show a correlation of 0.85 and a root mean square (RMS) difference of 15 mm. The two estimates have similar accuracy and their annual amplitude and phase agree within 3 mm and 23 days respectively. The GRACE-derived mass-induced sea level variability yields an annual amplitude of 27 ± 5 mm peaking in December and a trend of 5.3 ± 1.9 mm/yr, which deviates within 3 mm/yr from the altimetry-derived estimate.In the Black Sea, the series are less consistent, with lower accuracy of the GRACE-derived estimate, but still show a promising agreement considering the smaller size of the basin. The best agreement is realized choosing the corrections from WaterGAP2 and from the regional oceanographic model NEMO. The inter-annual time series have a correlation and RMS differences of 0.68 and 55 mm, their annual amplitude and phase agree within 4 mm and 6 days respectively. The GRACE-derived seawater mass signal has an annual amplitude of 32 ± 4 mm peaking in April. On inter-annual time scales, the mass-induced sea level variability is stronger than in the Mediterranean Sea, with an increase from 2003 to 2005 followed by a decrease from 2006 to 2008.Based on mass conservation, the mass-induced sea level variations, river runoff and precipitation minus evaporation are combined to derive the strait flows between the basins and with the Atlantic Ocean. At the Gibraltar strait, the net inflow varies annually with an amplitude of 52 ± 10 × 10−3 Sv peaking end of September (1 Sv = 106 m3 s−1). The inflow through the Bosphorus strait displays an annual amplitude of 13 ± 3 ×10−3 Sv peaking in the middle of March. Additionally, an increase of the Gibraltar net inflow (3.4 ± 0.8 × 10−3 Sv/yr) is detected.  相似文献   

9.
《Marine pollution bulletin》2013,77(1-2):360-364
The herbicide irgarol 1051 is commonly used on ship hulls to prevent growth of algae, but as a component of self-eroding paints it can also spread in the surrounding waters and affect non-target organisms. The effect of irgarol on settlement and growth of zoospores from the marine macro algae Ulva lactuca from the Gullmar fjord on the Swedish west coast was investigated in the present study. The zoospores were allowed to settle and grow in the presence of irgarol, but neither settlement – nor growth inhibition was observed at concentrations of up to 2000 nmol l−1. This is between 10 and 100 times higher than effect concentrations reported earlier for algae. Irgarol also induced the greening effect (4-fold increase in chlorophyll a content) in the settled zoospore/germling population, typical for photosystem II inhibitors like irgarol. This study support previous findings that irgarol constitutes a selection pressure in the marine environment.  相似文献   

10.
Organic matter production and nitrogen fixation in the central Baltic Sea were studied on the basis of high-resolution CO2 partial pressure data that were obtained from an automated measurement system deployed on a cargo ship. The net organic carbon (OC) production was calculated from a surface water CO2 mass balance and used to estimate the nitrogen uptake by organic matter during the period March to August 2005. It was shown that the net OC production continued despite the exhaustion of dissolved inorganic nitrogen (DIN) after the spring bloom in April. The nitrogen demand for this production was calculated on the basis of the C/N ratio of organic matter. It was of the same order of magnitude than the winter DIN concentration that fuelled the spring bloom. Since the atmospheric DIN deposition was negligible and no indications of alternative DIN sources were found, it was assumed that N2 fixation had taken place despite the low temperatures (4–8 °C) in April/May. This “cold fixation” amounted to 74 mmol m?2 whereas a value of 99 mmol m?2 was obtained for the summer N2 fixation during June/July. Due to the contribution of the April/May N2 fixation, a total annual rate (173±35 mmol m?2) was obtained for 2005 which is considerably higher than presently accepted estimates. These findings were confirmed by a nitrogen budget based on long-term data (1993–2006) for total nitrogen and total phosphorus concentrations. Furthermore, these data revealed a 30% increase in N2 fixation during the years 1994–2006.  相似文献   

11.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

12.
Biomonitoring methods based on macrophytes have been used mandatorily in the assessment of freshwaters since the implementation of the Water Framework Directive (WFD). The Macrophyte Index for Rivers (MIR) was developed in Poland for the monitoring of running waters under the WFD requirements. This index shows the degree of river degradation under the influence of water pollutants, especially nutrients. The aim of the present study was to determine the relationship between the MIR and various hydrochemical parameters using artificial neural networks (ANNs). Physico-chemical parameters of water (monthly results for the whole year), which were derived from 147 lowland river survey sites, all located in Poland, were applied to model the MIR values. Water quality variables were determined over three timeframes: the annual average; the average for the vegetation period; and the average for the summer period. Quality of the networks was assessed using coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE). The best modeling quality was obtained for yearly average values of water quality parameters. The quality statistics were: R2 = 0.722, NSE = 0.721 and RMSE = 0.056 (training dataset); R2 = 0.555, NSE = 0.533 and RMSE = 0.101 (validation dataset); R2 = 0.650. NSE = 0.600 and RMSE = 0.089 (testing dataset). This indicates that macrophytes reflect the whole year impact of pollution, whereas summer.  相似文献   

13.
Calcitic crusts of calcareous red algae could be suitable material for age determination of raised marine deposits and palaeothermometry at annual to sub-annual resolution. We examined the potential of U–Th dating of cold-water calcareous algae by analysing fossil specimens (n=10) from Kapp Ekholm (Svalbard) and recent specimens from Norway (n=3) and Scotland (n=1). After initial measurements using α-spectrometry, thermal ionisation mass spectrometry (TIMS) was used to study the material in more detail. Recent specimens contain 0.19–1.55 μg g−1 U, and the measured (234U/238U) activity ratios vary between 1.12 and 1.30. Fossil specimens contain 1–168 μg g−1 U, and display variable and highly elevated initial (234U/238U) activity ratios. In general, the TIMS results show increasing (234U/238U) activity ratios and concentrations of U and Th with increasing stratigraphic age. From this it is evident that marine calcareous red algae contain U in-vivo and they experience substantial post-mortem uptake of U. We conclude that direct U–Th dating of fossil calcareous algae from raised marine deposits is not viable without further geochemical understanding of the in-vivo uptake and post-depositional pathways of U and Th in such deposits. Despite the convincing open-system behaviour of the material, comparison with previously published chronostratigraphy from the site shows that the calcareous algae generally yield ages that are too old. This is in contrast to the expected result based on simple continuous post-mortem U accumulation and calls for a complex model comprising migration of U and multi-component addition of Th (detrital/colloidal) to explain the observed trends.  相似文献   

14.
《Water Policy》2001,3(4):321-340
Australia's annual water use of 22,000 Gl is dissected using input–output techniques, showing that 30% of Australia's water requirement was devoted to domestic food production and a further 30% to exports, compared with 7% required for direct consumption by households. There is a net annual trade deficit in embodied water of approximately 4000 Gl. A strong relationship exists between water requirement and expenditure. If by 2050 Australia's population grows to 25 million people and per-capita expenditure doubles, the annual water requirement may more than double to 50,000 Gl, equivalent to half the nation's water flows. While this increase may be improbable it gives the challenge that the water required to deliver a unit of output across the whole economy may have to reduce by a factor of two, if population growth and economic growth are to meet policy expectations.  相似文献   

15.
《Marine pollution bulletin》2012,64(5-12):385-395
The influence of different environmental stresses, including salinity (5–35‰), tidal cycle (6/6, 12/12 and 24/24 h of high/low tidal regimes) and nutrient addition (1–6 times background nitrogen and phosphorus content) on Bruguiera gymnorrhiza and Aegiceras corniculatum grown in sediment contaminated with spent lubricating oil (7.5 L m−2) were investigated. The oil-treated 1-year-old mangrove seedlings subject to low (5‰) and high (35‰) salinity had significantly more reduction in growth, more release of superoxide radical (O2) and higher activity of superoxide dismutase (SOD) than those subject to moderate salinity (15‰). Extended flooding (24/24 h of high/low tidal regime) enhanced O2 release and malondialdehyde (MDA) content in both oil-treated species but had little negative effects on biomass production (P > 0.05) except the stem of A. corniculatum (P = 0.012). The addition of nutrients had no beneficial or even posed harmful effects on the growth and cellular responses of the oil-treated seedlings.  相似文献   

16.
Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2–1.49 °C) and higher temperature rise (1.5–2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.  相似文献   

17.
《Marine pollution bulletin》2012,64(5-12):528-534
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia–nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day−1 for biochemical oxygen demand and 420 kg day−1 for ammonia–nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

18.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

19.
A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456–656 mg of As/kg and 1684–3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated.Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study.Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress.Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.  相似文献   

20.
《Marine pollution bulletin》2014,81(1-2):234-244
Dissolved inorganic nitrogen (DIN), phosphate (PO4) and silicic acid (Si(OH)4) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO4, in contrast to the Mafragh estuary’s near-pristine inputs; Si(OH)4 levels were low in both estuaries. The DIN:PO4 molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si–Si(OH)4 (400–540 kg Si km2 yr1) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km2 yr1). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号