首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed compilation of distal tephrostratigraphy comprising the last 20,000 yrs is given for the Central Mediterranean region. A total of 47 distinct ash layers identified in the maar lake sediments of Lago Grande di Monticchio (Basilicata, Southern Italy) are compared with proximal and distal terrestrial-marine tephra deposits in the circum-central Mediterranean region. The results of these studies provide valuable information for reconstructing the Late Pleistocene and the Holocene dispersal of pyroclastic deposits from south Italian explosive volcanoes, in particular Somma-Vesuvius, the Campi Flegrei caldera, Ischia Island and Mount Etna. Prominent tephras are discussed with respect to their reliability as dating and correlation tools in sedimentary records. Ashes from Plinian eruptions of Somma-Vesuvius (i.e. Avellino, Mercato, Greenish, Pomici di Base), for instance, are well-defined by their distribution patterns and their unique composition. The widespread Y-1 tephra from Mount Etna, on the other hand, derived most likely from two distinct Plinian events with changing wind conditions, and therefore becomes a less reliable stratigraphic marker. Statistical–numerical calculations are presented in order to discriminate between Holocene tephras from the Campi Flegrei caldera (i.e. Astroni 1–3, Agnano Monte Spina, Averno 1, Lagno Amendolare), since these ashes are characterized by an almost indistinguishable chemical fingerprint. As a highlight, numerous Campanian eruptions of proposed low-intensity have been identified in the distal site of Monticchio suggesting a revision of existing tephra dispersal maps and re-calculation of eruptive conditions. In summary, the tephra record of Monticchio is one of the key successions for linking both, terrestrial records from Central-southern Italy and marine sequences from the Tyrrhenian, Adriatic and Ionian Seas.  相似文献   

2.
The Ko-g and Ma-f~j tephras are two key isochronous marker layers in northern Japan, which are from the largest Plinian eruptions of Komagatake volcano (VEI = 5) and Mashu caldera (VEI = 6), respectively. Despite extensive radiocarbon studies associated with the two tephras, individual calibrated results show considerable variations and thus accurate ages of these important eruptions remain controversial. Bayesian statistical approaches to calibrating radiocarbon determinations have proven successful in increasing accuracy and sometimes precision for dating tephras, which is achieved through the incorporation of additional stratigraphic information and the combination of evidence from multiple records. Here we use Bayesian approaches to analyse the proximal and distal information associated with the two tephra markers. Through establishing phase and deposition models, we have taken into account all of the currently available stratigraphic and chronological information. The cross-referencing of phase models with the deposition model allows the refinement of eruption ages and the deposition model itself. Using this we are able to provide the most robust current age estimates for the two tephra layers. The Ko-g and Ma-f~j tephras are hereby dated to 6657-6505 (95.4%; 6586±40, μ±σ) cal yr BP, and 7670-7395 (95.4%; 7532±72, μ±σ) cal yr BP, respectively. These updated age determinations underpin the reported East Asian Holocene tephrostratigraphic framework, and allow sites where the tephra layers are present to be dated more precisely and accurately. Our results encourage further applications of Bayesian modelling techniques in the volcanically active East Asian region.  相似文献   

3.
The role of tephrochronology, as a dating and stratigraphic tool, in precise palaeoclimate and environmental reconstruction, has expanded significantly in recent years. The power of tephrochronology rests on the fact that a tephra layer can stratigraphically link records at the resolution of as little as a few years, and that the most precise age for a particular tephra can be imported into any site where it is found. In order to maximise the potential of tephras for this purpose it is necessary to have the most precise and robustly tested age estimate possible available for key tephras. Given the varying number and quality of dates associated with different tephras it is important to be able to build age models to test competing tephra dates. Recent advances in Bayesian age modelling of dates in sequence have radically extended our ability to build such stratigraphic age models. As an example of the potential here we use Bayesian methods, now widely applied, to examine the dating of some key Late Quaternary tephras from Italy. These are: the Agnano Monte Spina Tephra (AMST), the Neapolitan Yellow Tuff (NYT) and the Agnano Pomici Principali (APP), and all of them have multiple estimates of their true age. Further, we use the Bayesian approaches to generate a revised mixed radiocarbon/varve chronology for the important Lateglacial section of the Lago Grande Monticchio record, as a further illustration of what can be achieved by a Bayesian approach. With all three tephras we were able to produce viable model ages for the tephra, validate the proposed 40Ar/39Ar age ranges for these tephras, and provide relatively high precision age models. The results of the Bayesian integration of dating and stratigraphic information, suggest that the current best 95% confidence calendar age estimates for the AMST are 4690–4300 cal BP, the NYT 14320–13900 cal BP, and the APP 12380–12140 cal BP.  相似文献   

4.
Acquiring detailed eruption frequency datasets for a volcano system is essential for realistic eruption forecasts. However, accurate datasets are inherently difficult to compile, even if one or more well-dated eruption records are available. A single record typically under-represents the eruption frequency, while combining two or more records may result in an overrepresentation. Although glass compositions have proven to be successful in tephrochronological studies of dominantly rhyolitic tephras; microlitic growth and thin glass shards inhibit their application to andesitic tephras. A method consisting of a combination of two techniques for correlating syn-eruptive deposits is demonstrated on data from the typical andesitic stratovolcano of Mt. Taranaki, New Zealand. Firstly, tentative matches are identified using the radiocarbon age and associated error of each event. Secondly, the compositions of titanomagnetite micro-phenocrysts are used as an independent check, and shown to be a useful correlation tool where age data is available. Using two lake-core records containing tephra layers in an overlapping time-frame, the radiocarbon age-correlation procedure suggested 31 tephra matches. Geochemistry data were available for 15 of these pairs. In three of these cases, the titanomagnetite compositions did not match. Hence, these “paired” tephras were from compositionally distinct magmas and therefore likely represent separate events. An additional three matches were reassigned within the temporal uncertainty limits of the dating procedure, based on better geochemical pairing. The final combined dataset suggests that there have been at least 138 separate ash fall-producing eruptions between 96 and 10 150 years B.P. from Taranaki. Using the combined dataset the mixture of Weibulls renewal model forecasts a probability of 0.52 for an eruption occurring in the next 50 years at this volcano. The present annual eruption probability is estimated at 1.6%. This likelihood is almost double that obtained when relying on a single stratigraphic record.  相似文献   

5.
Bayesian age-depth models were constructed for two Late Quaternary aged fossil-bearing sedimentary sequences from caves in south eastern South Australia. The deposits in Wet and Blanche Caves contain dense assemblages of vertebrate fossils, largely the result of owl pellet accumulation. While individually calibrated radiocarbon determinations from the fossil sequences have provided a chronology for their accumulation, there was limited capacity available with such data to (a) temporally constrain assemblages associated with different depositional units and layers within the two sites, (b) interpret the chronological relationships among successive units and layers and (c) correlate sedimentary units and layers of similar age between the two deposits. Here, Bayesian age-depth models were constructed in OxCal for the Wet and Blanche Cave sequences, incorporating the available radiocarbon data and stratigraphic information collected during their excavation. Despite the low precision of the age-depth models for Wet and Blanche Caves which results in part from there being only single radiocarbon determinations available for a number of units and layers, the models enabled the relationships within and between the two sites to be established. Of particular utility for future faunal analyses is quantification of the temporal relationship between strata from the two sites, where groups of individual layers from Blanche Cave were found to be temporally equivalent with the longer-duration units in Wet Cave. We suggest that the use of Phase modelling, as performed here, is useful for cave deposits that have complex depositional histories and even in such instances where, as is common for palaeontological sites, few radiocarbon data are collected relative to the time-spans of tens of millennia that are often represented by them.  相似文献   

6.
The paper reviews the existing data on the Y-3 tephra layer, first recognised in the Ionian Sea (Mediterranean basin). The collection and collation of old and new data on distal tephra occurrences in terrestrial, marine and lacustrine successions indicate that the Y-3 layer is dispersed over a wide area of the central Mediterranean basin. The peculiar homogeneous chemical composition of this layer makes its recognition rather straightforward and permits it being distinguished from other stratigraphically adjacent tephras. The best age estimate for the Y-3 layer of ca 30–31 cal ka BP, its peculiar stratigraphic position close to the Marine Isotope Stage 3/2 transition or Heinrich Event 3 onset, as well as its wide dispersion makes this layer an important marker to link and date late Pleistocene terrestrial and marine archives of the central Mediterranean basin.  相似文献   

7.
8.
Macro- and crypto-tephra layers deposited in European climate archives during the Last Glacial-Interglacial Transition (LGIT ca. 16–8 ka) have become increasingly important as a means to robustly correlate palaeoclimate records, and to test the spatial and temporal synchronicity of climatic transitions. However, correlations between climate archives are currently limited by the number of tephra-linkages that can be made. This disparity in the observed distributions of tephras may lie with methodological limitations relating to the resolution of cryptotephra refinement within palaeoclimate records. Here we present new data from Quoyloo Meadow, Orkney Mainland, Scotland, where nine tephra horizons and ten chemically distinct tephra populations have been identified and correlated to known eruptions during the LGIT. Three of the tephras; the Hässeldalen, Hovsdalur and the Fosen are characterised and placed into a reliable tephrostratigraphy for the first time in the British Isles. The detection of new tephra layers in this case is thought to reflect modifications to the sampling approach applied here. The resulting tephrostratigraphy is used to produce an age model with centennial-scale precision, providing new age estimates for three poorly dated tephras. The chronology rivals the output of more traditionally dated radiocarbon chronologies, and illustrates the potential for tephra to develop robust age-depth models for carbonate sequences.  相似文献   

9.
More than a dozen new radiocarbon dates reconstruct the eruptive history of Ceboruco volcano. Six of these further constrain previous results for the important plinian Jala eruption, which occurred near 1060 ± 55 yr BP. A calibrated radiocarbon age of AD 990–1020 was obtained as best overlap range for all samples. Pottery fragments found directly underneath the pumice deposit indicate that this area was inhabited by human populations that witnessed the eruption. This age therefore represents an important time marker in the prehistory of this region, because an area of > 560 km2 was devastated and covered by a thickness of > 50 cm of pumice and ash fallout.  相似文献   

10.
Volcanic ash produced during explosive eruptions can have very severe impacts on modern technological societies. Here, we use reconstructed patterns of fine ash dispersal recorded in terrestrial and marine geological archives to assess volcanic ash hazards. The ash-dispersal maps from nine Holocene explosive eruptions of Italian volcanoes have been used to construct frequency maps of distal ash deposition over a wide area, which encompasses central and southern Italy, the Adriatic and Tyrrhenian seas and the Balkans. The maps are presented as two cumulative-thickness isopach maps, one for nine eruptions from different volcanoes and one for six eruptions from Somma-Vesuvius. These maps represent the first use of distal ash layers to construct volcanic hazard maps, and the proposed methodology is easily applicable to other volcanic areas worldwide.  相似文献   

11.
12.
Numerous volcanoes in the Afar Triangle and adjacent Ethiopian Rift Valley have erupted during the Quaternary, depositing volcanic ash (tephra) horizons that have provided crucial chronology for archaeological sites in eastern Africa. However, late Pleistocene and Holocene tephras have hitherto been largely unstudied and the more recent volcanic history of Ethiopia remains poorly constrained. Here, we use sediments from lakes Ashenge and Hayk (Ethiopian Highlands) to construct the first <17 cal ka BP tephrostratigraphy for the Afar Triangle. The tephra record reveals 21 visible and crypto-tephra layers, and our new database of major and trace element glass compositions will aid the future identification of these tephra layers from proximal to distal locations. Tephra compositions include comendites, pantellerites and minor peraluminous and metaluminous rhyolites. Variable and distinct glass compositions of the tephra layers indicate they may have been erupted from as many as seven volcanoes, most likely located in the Afar Triangle. Between 15.3−1.6 cal. ka BP, explosive eruptions occurred at a return period of <1000 years. The majority of tephras are dated at 7.5−1.6 cal. ka BP, possibly reflecting a peak in regional volcanic activity. These findings demonstrate the potential and necessity for further study to construct a comprehensive tephra framework. Such tephrostratigraphic work will support the understanding of volcanic hazards in this rapidly developing region.  相似文献   

13.
Numerous volcanoes in the Afar Triangle and adjacent Ethiopian Rift Valley have erupted during the Quaternary, depositing volcanic ash (tephra) horizons that have provided crucial chronology for archaeological sites in eastern Africa. However, late Pleistocene and Holocene tephras have hitherto been largely unstudied and the more recent volcanic history of Ethiopia remains poorly constrained. Here, we use sediments from lakes Ashenge and Hayk (Ethiopian Highlands) to construct the first <17 cal ka BP tephrostratigraphy for the Afar Triangle. The tephra record reveals 21 visible and crypto-tephra layers, and our new database of major and trace element glass compositions will aid the future identification of these tephra layers from proximal to distal locations. Tephra compositions include comendites, pantellerites and minor peraluminous and metaluminous rhyolites. Variable and distinct glass compositions of the tephra layers indicate they may have been erupted from as many as seven volcanoes, most likely located in the Afar Triangle. Between 15.3−1.6 cal. ka BP, explosive eruptions occurred at a return period of <1000 years. The majority of tephras are dated at 7.5−1.6 cal. ka BP, possibly reflecting a peak in regional volcanic activity. These findings demonstrate the potential and necessity for further study to construct a comprehensive tephra framework. Such tephrostratigraphic work will support the understanding of volcanic hazards in this rapidly developing region.  相似文献   

14.
Tephra dispersed during the Millennium eruption (ME), Changbaishan Volcano, NE China provides one of the key stratigraphic links between Asia and Greenland for the synchronization of palaeoenvironmental records. However, controversy surrounds proximal-distal tephra correlations because (a) the proposed proximal correlatives of the distal ME tephra (i.e. B–Tm) lack an unequivocal chronostratigraphic context, and (b) the ME tephra deposits have not been chemically characterized for a full spectrum of element using grain-specific techniques. Here we present grain-specific glass chemistry, including for the first time, single grain trace element data, for a composite proximal sequence and a distal tephra from Lake Kushu, northern Japan (ca. 1100 km away from Changbaishan). We demonstrate a robust proximal-distal correlation and that the Kushu tephra is chemically associated with the ME/B–Tm. We propose that three of the proximal pyroclastic fall units were erupted as part of the ME. The radiocarbon chronology of the Kushu sedimentary record has been utilised to generate a Bayesian age-depth model, providing an age for the Kushu tephra which is consistent with high resolution ages determined for the eruption and therefore supports our geochemical correlation. Two further Bayesian age-depth models were independently constructed each incorporating one of two ice-core derived ages for the B–Tm tephra, providing Bayesian modelled ages of 933–949 and 944–947 cal AD (95.4%) for the Kushu tephra. The high resolution ice-core tephra ages imported into the deposition models help test and ultimately constrain the radiocarbon chronology in this interval of the Lake Kushu sedimentary record. The observed geochemical diversity between proximal and distal ME tephra deposits clearly evidences the interaction of two compositionally distinct magma batches during this caldera forming eruption.  相似文献   

15.
We present results from a cryptotephra investigation performed at a high resolution (0.5 cm) on sediments from Körslättamossen in southernmost Sweden. Six peak concentration levels were detected and extracted for geochemical analysis by electron probe microanalyser. Five of these levels were successfully analysed and we propose correlations to the Hässeldalen Tephra, the Vedde Ash, and the Laacher See Tephra (adding new analysis results for the first geochemically confirmed finding of the latter in Sweden), as well as an undetermined Borrobol-type tephra. The tephra identifications were combined with radiocarbon dated macrofossils in order to create an age model for the sampled sediments based on Bayesian methods. Stratigraphical and chronological results were found to concur with a previous study of the site and our results form the basis for discussion concerning the issues surrounding Lateglacial Borrobol-type tephras, of which we suggest further review in order to unlock these tephras’ full potential for Quaternary studies.  相似文献   

16.
Age–depth models form the backbone of most palaeoenvironmental studies. However, procedures for constructing chronologies vary between studies, they are usually not explained sufficiently, and some are inadequate for handling calibrated radiocarbon dates. An alternative method based on importance sampling through calibrated dates is proposed. Dedicated R code is presented which works with calibrated radiocarbon as well as other dates, and provides a simple, systematic, transparent, documented and customizable alternative. The code automatically produces age–depth models, enabling exploration of the impacts of different assumptions (e.g., model type, hiatuses, age offsets, outliers, and extrapolation).  相似文献   

17.
Tephra layers from archaeological sites in southern Italy and eastern Europe stratigraphically associated with cultural levels containing Early Upper Palaeolithic industry were analysed. The results confirm the occurrence of the Campanian Ignimbrite tephra (CI; ca. 40 cal ka BP) at Castelcivita Cave (southern Italy), Temnata Cave (Bulgaria) and in the Kostenki–Borshchevo area of the Russian Plain. This tephra, originated from the largest eruption of the Phlegrean Field caldera, represents the widest volcanic deposit and one of the most important temporal/stratigraphic markers of western Eurasia. At Paglicci Cave and lesser sites in the Apulia region we recognise a chemically and texturally different tephra, which lithologically, chronologically and chemically matches the physical and chemical characteristics of the Plinian eruption of Codola; a poorly known Late Pleistocene explosive event from the Neapolitan volcanoes, likely Somma–Vesuvius. For this latter, we propose a preliminary age estimate of ca. 33 cal ka BP and a correlation to the widespread C-10 marine tephra of the central Mediterranean. The stratigraphic position of both CI and Codola tephra layers at Castelcivita and Paglicci help date the first and the last documented appearance of Early Upper Palaeolithic industries of southern Italy to ca. 41–40 and 33 cal ka BP, respectively, or between two interstadial oscillations of the Monticchio pollen record – to which the CI and Codola tephras are physically correlated – corresponding to the Greenland interstadials 10–9 and 5. In eastern Europe, the stratigraphic and chronometric data seem to indicate an earlier appearance of the Early Upper Palaeolithic industries, which would predate of two millennia at least the overlying CI tephra. The tephrostratigraphic correlation indicates that in both regions the innovations connected with the so-called Early Upper Palaeolithic – encompassing subsistence strategy and stone tool technology – appeared and evolved during one of the most unstable climatic phases of the Last Glacial period. On this basis, the marked environmental unpredictability characterising this time-span is seen as a potential ecological factor involved in the cultural changes observed.  相似文献   

18.
The Atacazo–Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data, including petrographic and whole-rock geochemical analyses of over forty soil and tephra sections, 100 pumice and lithic samples, and 10 new 14C ages allow us to constrain: (1) the tephra fall isopachs and detailed characteristics of the last two events (N5–N6) including volume estimates of the tephra and pyroclastic flow deposits and the corresponding volcanic explosivity index (VEI); (2) the petrographical and geochemical correlations between domes, tephras, and pyroclastic flow deposits; and, (3) the timing of the last 4 eruptive events and a period of quiescence that endured a few thousand years (1000–4000).  相似文献   

19.
The Lake Suigetsu 2006 Varved Sediment Core Project (SG06 Project) aims to contribute to the international terrestrial radiocarbon calibration model, extending it to >50,000 cal years BP using the new SG06 sediment record, which shows annual laminations (varves) for most of this period. For varve counting, a novel approach using high resolution X-ray fluorescence (μXRF) and X-radiography was applied, described here in detail for the first time, and applied to the Late Glacial sediments of core SG06. This new technique was carried out alongside conventional varve counting by thin-section microscopy (Schlolaut et al., 2012). This dual approach allows comparison of results from the two independent counting methods on metre to sub-mm scales, enabling the identification and characterisation of differences between the techniques, and quantification of their weaknesses. Combining the results produces a more robust chronology than either counting method could produce alone. The reliability of this dual approach is demonstrated by comparison of the combined chronology with the radiocarbon dataset of SG06, calibrated with the tree-ring derived Late Glacial section of IntCal09.  相似文献   

20.
In this study are discussed new SEM-EDS analyses performed on glass shards from five cores collected in the Central Adriatic Sea and two cores recovered from the South Adriatic Sea. A total of 26 tephra layers have been characterized and compared with the geochemical features of terrestrial deposits and other tephra archives in the area (South Adriatic Sea and Lago Grande di Monticchio, Vulture volcano). The compositions are compatible with either a Campanian or a Roman provenance. The cores, located on the Central Adriatic inner and outer shelf, recorded tephra referred to explosive events described in the literature: AP3 (sub-Plinian activity of the Somma-Vesuvius, 2710 ± 60 14C years BP); Avellino eruption (Somma–Vesuvius, 3548 ± 129 14C years BP); Agnano Monte Spina (Phlegrean Fields, 4100 ± 400 years BP); Mercato eruption (Somma–Vesuvius, 8010 ± 35 14C years BP; Agnano Pomici Principali eruption (Phlegrean Fields, 10,320 ± 50 14C years BP); Neapolitan Yellow Tuff (Phlegrean Fields, 12,100 ± 170 14C years BP). Some of these layers were also observed in the South Adriatic core IN68-9 in addition to younger (AP2, sub-Plinian eruption, Somma–Vesuvius, 3225 ± 140 14C years BP), and older layers (Pomici di Base eruption, Somma–Vesuvius, 18,300 ± 150 14C years BP). Significant is the tephra record of core RF95-7 that, for the first time in the Adriatic Sea, reports the occurrence of tephra layers older than 60 ka: the well known Mediterranean tephra layers X2 (ca. 70 ka), W1 (ca. 140 ka) and V2 (Roman origin, ca. 170 ka) as well as other tephra layers attributed, on the basis of geochemistry and biostratigraphy, to explosive eruptions occurred at Vico (138 ± 2 and 151 ± 3 ka BP) and Ischia (147–140 ka BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号