首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿哈湖Fe、Mn沉积后再迁移的生物地球化学机理   总被引:18,自引:1,他引:17  
万曦  万国江  黄荣贵  普勇 《湖泊科学》1997,9(2):129-134
贵州阿哈湖是一底层滞水带季节性缺氧的中型人工湖。由于长期积累。沉积物顶部微粒悬浮层出现了Fe、Mn富集。湖底缺氧时,经生物氧化作用形成的Fe^2+、Mn^2+自沉积物向上覆水体扩散,水体Fe^2+浓度增高比Mn^2+滞后出现且超过前结束。  相似文献   

2.
The inhibition of marine nitrification by ocean disposal of carbon dioxide   总被引:1,自引:0,他引:1  
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.  相似文献   

3.
A laboratory incubation experiment was conducted using replicate cores collected from a muddy-sand sediment facies offshore Sydney, Australia to determine what components and processes would be affected by the addition of sewage organic matter. Sewage effluent has a solid phase composition of 40% carbon (35% organic carbon), 5% nitrogen, 1% phosphorus and 5% silicate. The molecular C:N:P ratio is 92:10:1, compared to the Redfield ratio of 106:16:1 in marine phytoplankton. Sediment cores were incubated at in situ temperature in a darkened room for periods up to 95 days. Sewage organic matter was added to the cores at three different loads equivalent to 0 (T0), 65 (T1) and 130 (T2) g m−2 of sediment. Following the addition of sewage organic matter, fluxes of oxygen (into the sediments), ammonia and phosphate (from the sediments) increased, reflecting an enhanced organic carbon supply to the sediments. Oxygen penetrated to a depth of 6 mm in the ambient cores, but the sediment oxygen content was severely depleted following the addition of the sewage-derived organic matter. Sediment porewater data, together with nutrient flux data indicate that oxygen reduction, nitrate reduction and sulphate reduction occurs within these sediments. Following the addition of sewage organic matter, increases in total nitrogen, total phosphate and total organic carbon were measured to depths of 5 cm in the sediments, suggesting that bioturbation influences nutrient and organic carbon distributions. Additionally, irrigation of the surficial sediments may play an important role in the metabolism of organic matter. These results indicate that oxygen penetration, oxygen fluxes, nitrate concentrations within porewaters, ammonia flux rates, and solid phase concentrations of total organic carbon and nutrients may be useful indicators of sediments affected by high rates of organic matter deposition onto Sydney's offshore sediments. The EPA has recently predicted maximum deposition rates of sewage particulate matter to be approximately 1 g m−2 day−1. Because of the similarities in CNP ratios of sewage organic matter and marine organic matter, the effects of sewage organic matter and marine organic matter inputs to coastal sediments may not be easily distinguishable.  相似文献   

4.
The artificial mussel (AM), a novel chemical sampling device, has been developed for monitoring dissolved trace metals in marine environments. The AM consists of Chelex-100 suspended in artificial seawater within Perspex tubing and enclosed with semi-permeable polyacrylamide gel at both ends. To validate the field performance of the AM in temperate waters, we deployed AMs alongside transplanted blue mussels Mytilus edulis in coastal environments in Scotland (Holy Loch, Loch Fyne, Loch Striven and Millport) and Iceland (Reykjavikurh?fn, Gufunes, South of thornerney, Hofsvik, Hvalfj?rethur and Sandgerethi) for monitoring trace metals. While uptake patterns of Cd between the AM and M. edulis were highly comparable, discrepancies were found in the accumulation profiles of the other metals (Cu, Cr, Pb and Zn), in particular Zn. Nonetheless, the AMs gave a better resolution to accurately reveal the spatial difference in dissolved metal contamination when compared with M. edulis. AMs complement the use of mussels since AMs indicate dissolved metals in seawater, whereas uptake by mussels indicates a mixture of dissolved and particulate metals. Our results also indicated that historical metal exposure of the transplanted M. edulis could significantly confound their metal concentrations especially when the deployment period was short (i.e. <34d). This study suggested that the AM can overcome problems associated with variable biological attributes and pre-exposure history in the mussel, and provides a standardized and representative time-integrated estimate of dissolved metal concentrations in different marine environments.  相似文献   

5.
Observations in Elefsis Bay, an anoxic basin in the Saronikos Gulf, indicate that the large accumulation of ammonia, phosphates and silicates in the deep water are the result of the decomposition of organic matter during the anoxic period. The processes of denitrification, nitrate reduction and organic decomposition are also evident. Ammonia predominates in the inorganic fraction within the whole water column.  相似文献   

6.
《Marine pollution bulletin》2009,58(6-12):790-800
The artificial mussel (AM), a novel chemical sampling device, has been developed for monitoring dissolved trace metals in marine environments. The AM consists of Chelex-100 suspended in artificial seawater within Perspex tubing and enclosed with semi-permeable polyacrylamide gel at both ends. To validate the field performance of the AM in temperate waters, we deployed AMs alongside transplanted blue mussels Mytilus edulis in coastal environments in Scotland (Holy Loch, Loch Fyne, Loch Striven and Millport) and Iceland (Reykjavikurhöfn, Gufunes, South of þerney, Hofsvik, Hvalfjörður and Sandgerði) for monitoring trace metals. While uptake patterns of Cd between the AM and M. edulis were highly comparable, discrepancies were found in the accumulation profiles of the other metals (Cu, Cr, Pb and Zn), in particular Zn. Nonetheless, the AMs gave a better resolution to accurately reveal the spatial difference in dissolved metal contamination when compared with M. edulis. AMs complement the use of mussels since AMs indicate dissolved metals in seawater, whereas uptake by mussels indicates a mixture of dissolved and particulate metals. Our results also indicated that historical metal exposure of the transplanted M. edulis could significantly confound their metal concentrations especially when the deployment period was short (i.e. <34 d). This study suggested that the AM can overcome problems associated with variable biological attributes and pre-exposure history in the mussel, and provides a standardized and representative time-integrated estimate of dissolved metal concentrations in different marine environments.  相似文献   

7.
Interstitial water samples from the Guatemala Basin and the coast of Baja California have been analyzed for manganese, iron, copper, nickel and nitrate. The data provide a systematic look at changes in trace metal diagenesis proceeding from red clay to highly reducing nearshore sediments.In red clay sediments, the nitrate concentrations suggest that only aerobic respiration is occurring. Manganese and iron are below detection. Nickel concentrations remain the same as in bottom seawater but copper shows a pronounced maximum just at the sediment/water interface. Proceeding to hemipelagic sediments, denitrification becomes increasingly important and manganese and iron remobilization occur in the sediments.The linear manganese and nitrate profiles suggest regions of production or consumption separated by zones of diffusion. This differs from the conventional picture of a continuous series of reactions within the sediments. Manganese reduction always occurs before iron reduction. The pore water nickel correlates well with manganese in these sediments, suggesting that nickel is associated with MnO2 in the solid phase. The pore water flux ratio of manganese and nickel agrees well with the ratio in solid phase authigenic oxides. Copper still displays a core top concentration maximum as well as a second maximum associated with the remobilized manganese. The calculated ratio of the Cu/C flux ratios support the argument for copper remobilization during organic carbon oxidation. Comparison of the upward and downward diffusive fluxes with the rate of copper buried by sedimentation shows that at least half of the copper buried must be of diagenetic origin and less than 25% of the copper reaching the sediments is buried.  相似文献   

8.
Wastewater with high ammonia concentrations is produced by many industries, e.g. in the production of fertilizer and explosives and in the agricultural and food industry. A direct discharge into rivers and lakes has to be avoided: Oxidation of ammonia requires 4.56 g DO/g NH+4-N and results in a decrease of dissolved oxygen concentration. Moreover, nitrate stimulates the proliferation of algae, with regard to the eutrophication of natural waters. For municipal wastewater with an ammonia concentration less than 50 mg/L NH+4-N nitrification is a standard process. However, the removal of higher loaded industrial effluents still poses many questions. Recently, lab-scale and pilot-scale investigations show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. But because of changing flowrates and concentrations, the aid of advanced control algorithms is necessary. Some of the most important variables of biochemical reactors can be determined only with difficulty, at times only with off-line measurements. Model-aided measurement approaches try to determine these variables indirectly from easily measured variables. An experimentally-proved reactor model is required. Therefore, a dynamic model of nitrification in ideally mixed reactors is proposed based on mass balances for the components ammonia. nitrite, nitrate. dissolved oxygen DO, carbon dioxide, pH. nitrosomonas and nitrobacter. The biological reaction rates consider oxygen limitation and substrate inhibition. The process model presented is tested by lab scale experiments using an aerated stirred tank reactor and a fluidized bed reactor. Conformity between the predictions of the model and the observed data was positive. It has been shown that the nitrite oxidation by nitrobacter is the most sensible step in nitrification.  相似文献   

9.
Backwaters connected to large rivers retain nitrate and may play an important role in reducing downstream loading to coastal marine environments. A summer nitrogen (N) inflow-outflow budget was examined for a flow-regulated backwater of the upper Mississippi River in conjunction with laboratory estimates of sediment ammonium and nitrate fluxes, organic N mineralization, nitrification, and denitrification to provide further insight into N retention processes. External N loading was overwhelmingly dominated by nitrate and 54% of the input was retained (137 mg m−2 day−1). Ammonium and dissolved organic N were exported from the backwater (14 and 9 mg m−2 day−1, respectively). Nitrate influx to sediment increased as a function of increasing initial nitrate concentration in the overlying water. Rates were greater under anoxic versus oxic conditions. Ammonium effluxes from sediment were 26.7 and 50.6 mg m−2 day−1 under oxic and anoxic conditions, respectively. Since anoxia inhibited nitrification, the difference between ammonium anoxic–oxic fluxes approximated a nitrification rate of 29.1 mg m−2 day−1. Organic N mineralization was 64 mg m−2 day−1. Denitrification, estimated from regression relationships between oxic nitrate influx versus initial nitrate concentration and a summer lakewide mean nitrate concentration of 1.27 mg l−1, was 94 mg m−2 day−1. Denitrification was equivalent to only 57% of the retained nitrate, suggesting that another portion was assimilated by biota. The high sediment organic N mineralization and ammonium efflux rate coupled with the occurrence of ammonium export from the system suggested a possible link between biotic assimilation of nitrate, mineralization, and export.  相似文献   

10.
An overview of toxicant identification in sediments and dredged materials   总被引:1,自引:0,他引:1  
The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation's waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. Knowledge of which contaminants affect benthic systems allows managers to link pollution to specific dischargers and prevent further release of toxicant(s). In addition, identification of major causes of toxicity in sediments may guide programs such as those developing environmental sediment guidelines and registering pesticides, while knowledge of the causes of toxicity which drive ecological changes such as shifts in benthic community structure would be useful in performing ecological risk assessments. To this end, the US Environmental Protection Agency has developed tools (toxicity identification and evaluation (TIE) methods) that allow investigators to characterize and identify chemicals causing acute toxicity in sediments and dredged materials. To date, most sediment TIEs have been performed on interstitial waters. Preliminary evidence from the use of interstitial water TIEs reveals certain patterns in causes of sediment toxicity. First, among all sediments tested, there is no one predominant cause of toxicity; metals, organics, and ammonia play approximately equal roles in causing toxicity. Second, within a single sediment there are multiple causes of toxicity detected; not just one chemical class is active. Third, the role of ammonia is very prominent in these interstitial waters. Finally, if sediments are divided into marine or freshwater, TIEs perforMed on interstitial waters from freshwater sediments indicate a variety of toxicants in fairly equal proportions, while TIEs performed on interstitial waters from marine sediments have identified only ammonia and organics as toxicants, with metals playing a minor role. Preliminary evidence from whole sediment TIEs indicates that organic compounds play a major role in the toxicity of marine sediments, with almost no evidence for either metal or ammonia toxicity. However, interpretation of these results may be skewed because only a small number of interstitial water (n = 13) and whole sediment (n = 5) TIEs have been completed. These trends may change as more data are collected.  相似文献   

11.
We investigated the effects of biostimulation and bioagumentation strategies applied to harbor sediments displaying reducing conditions and high concentrations of petroleum hydrocarbons and heavy metals. We compared the microbial efficiency of hydrocarbon removal from sediments maintained for 60 days in anoxic conditions and inoculated with acetate, sulfate-reducing bacterial strains and acetate and sulfate-reducing bacteria. All treatments determined a significant increase in the microbial growth and significant decreases of hydrocarbon contents and of redox potential values. The addition of sulfate-reducing bacterial strains to the sediment was the most efficient treatment for the hydrocarbon removal. In all experiments, significant changes of the heavy metals’ phase repartition were observed. The results reported here suggest that the biodegradation of petroleum hydrocarbons in anoxic marine sediments may be enhanced by stimulating microbial anaerobic metabolism, but care should be applied to monitor the potential changes in the mobility and bioavailability of heavy metals induced by bio-treatments.  相似文献   

12.
We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.  相似文献   

13.
Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4~+ by using NO_2~- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research.  相似文献   

14.
A nomogram is developed to show that pH, redox potentials (EhNHE) and measures of dissolved sulfides (H2S + HS + S2−)(total free S2−) can be used to classify organic enrichment impacts in marine sediments. The biogeochemical cycle of sulfur in marine sediments is described to show that changes in macrobenthic infauna community structure associated with high levels of organic matter supply result from stress due to oxygen deficiency (hypoxia and anoxia) and toxic effects of S2−. The changes reflect enhancement of microbial sulfate reduction under conditions of high organic matter sedimentation and the progressive formation of hypoxic–anoxic conditions measured by decreased EhNHE and increased concentrations of S2−. The nomogram provides a basis for classification of the oxic status of marine sediments based on changes in inter-related biological and biogeochemical variables along an organic enrichment gradient.  相似文献   

15.
程月  李一平  施媛媛  唐春燕 《湖泊科学》2020,32(6):1646-1656
随着太湖流域控源截污和面源整治的推行,底泥释放成为太湖不可忽视的污染源.本文基于EFDC模型构建太湖沉积成岩模型以动态模拟底泥释放过程,以氨氮和硝态氮为水质目标,采用拉丁超立方抽样抽取沉积成岩模型的18个参数进行不确定性分析,采用标准秩逐步回归法进行敏感性分析.结果表明:对于大型浅水湖泊,沉积物-水界面的硝化作用、反硝化作用和扩散过程对底泥氮的释放影响很大,太湖氮浓度的不确定性有明显的时空差异,并且受藻类生长影响;随藻类生长生化反应参数的敏感性逐渐减弱,动力参数的敏感性逐渐增强,氨氮的主要敏感参数为孔隙水扩散系数和最优硝化反应速率,贡献率分别是41.68%和37.82%,硝态氮的主要敏感参数为孔隙水扩散系数和表层反硝化作用反应速率,贡献率分别是29.15%和42.34%,这些参数的取值需予以着重考虑.本研究识别出太湖底泥氮释放的关键物化过程,为模型调参提供优先级并给出优化区间,对减小模型的不确定性、提高模型精度有参考意义,为定性指导大型浅水湖泊底泥释放的室内实验模拟提供依据.  相似文献   

16.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   

17.
A laboratory study was carried out to investigate the influence of the biomass content in the sediment on the rate of diagenesis of particulate organic materials (POM) and the consequent sediment oxygen demand (SOD) and nutrient fluxes. Fish food pellets were loaded into the sediment to simulate a sudden POM input. Three types of sediments with different biomass contents were tested, including a raw marine sediment, the marine sediment after one month of cultivation and an artificial sediment of sand and clay without any biomass. There was little difference in organic flux from the three different sediments. However, compared to the artificial sediment, the marine sediments had much higher SOD and ammonia flux. A mathematical model also has been developed for the SOD dynamics and nutrient fluxes. Both the experimental and simulation results indicate the important role of the biomass in the sediment in POM diagenesis, SOD and nutrient fluxes.  相似文献   

18.
The most important source of dissolved manganese, Mn(II), to the Dead Sea is by upward diffusion from bottom sediments. This source contributes about 80 tons of Mn(II) each year. The concentration of dissolved manganese in the Dead Sea is extraordinarily high (7.03 mg 1?1). It appears that the content (some 1.026 × 106 tons) of dissolved manganese in the sea has remained constant during 1977–1979, although oxygen was introduced into deeper layers during the deepening of the pycnocline (1977–1978) and during the overturn of its water masses in the winter of 1978/79. The rate of oxidation of Mn(II) in Dead Sea water is extremely slow hence Mn(II) may practically be considered as the stable form of Mn in Dead Sea waters. Dilution by fresh water causes a pH rise and may facilitate faster oxidation of the dissolved divalent manganese. It is shown here that the shape of the Mn(II) profile, observed in the lake during 1963, may have developed by oxidation of Mn(II) in the more diluted upper layers and subsequent reduction of the oxidation products in the anoxic and more saline deeper layers during 260 years of continuous meromixis.  相似文献   

19.
《Marine pollution bulletin》2009,58(6-12):681-688
A laboratory study was carried out to investigate the influence of the biomass content in the sediment on the rate of diagenesis of particulate organic materials (POM) and the consequent sediment oxygen demand (SOD) and nutrient fluxes. Fish food pellets were loaded into the sediment to simulate a sudden POM input. Three types of sediments with different biomass contents were tested, including a raw marine sediment, the marine sediment after one month of cultivation and an artificial sediment of sand and clay without any biomass. There was little difference in organic flux from the three different sediments. However, compared to the artificial sediment, the marine sediments had much higher SOD and ammonia flux. A mathematical model also has been developed for the SOD dynamics and nutrient fluxes. Both the experimental and simulation results indicate the important role of the biomass in the sediment in POM diagenesis, SOD and nutrient fluxes.  相似文献   

20.
Intermittent anoxia in the Saanich Inlet water column provides an easily accessible marine O2/H2S interface to study the response of metals to both a steep redox gradient and the availability of reactive reduced sulfur species. Our study indicates a strong anoxic zone sink for copper and cadmium and the characteristically enhanced solubility of manganese and iron. Thiosulfate and sulfite are below detection limits (1 μM and 0.1 μM, respectively) and thus not important in metal complexation. Elemental sulfur concentrations are high at the oxic/anoxic interface and throughout the anoxic zone, indicating the potential for metal complexation by polysulfides. A thermodynamic approach employing metal sulfide formation and class specific sulfidic ligand complexation to generate equilibrium profiles adequately describes the solubility of iron, copper, and cadmium. The extension of this scheme to other transition and class B metals in other marine environments with redox fronts is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号