首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study explored ontogenetic shifts in habitat associations by coral reef fishes between recently settled juvenile and adult life stages (Moorea Island: Tiahura and Papetoai sites). Visual censuses highlighted four ontogenetic patterns in habitat associations: (1) no change in habitat associations between the juvenile and adult stages; (2) a decrease in the number of habitats used by adults compared to juveniles; (3) an increase in the number of habitats used during the adult stage; and (4) use of nursery areas by juveniles followed by an extensive movement to an entirely different adult habitat. The comparative analysis of spatial distribution of fish at Tiahura and Papetoai highlighted no-spatial variability in ontogenetic patterns (i.e., 10 of the 15 recorded species have spatial consistency in ontogenetic patterns). Overall, the shifts in habitat associations are of interest in the perspective of understanding flexibility and adaptation capability of coral reef fish, at least at the settlement time.  相似文献   

2.
Determining the nursery habitat of fishes that have moved from estuarine nursery habitats is difficult. The elemental fingerprints of otoliths of three species of sparids were determined to investigate their utility as a natural tag of the nursery habitat. Juvenile Pagrus auratus (snapper), Rhabdosargus sarba (tarwhine) and Acanthopagrus australis (bream) were collected from two sites in each of 15, six and three estuaries, respectively, and their otoliths analysed by solution-based inductively coupled plasma-mass spectrometry. Significant differences in otolith chemistry were found for all three species of juveniles collected from different estuaries. The same patterns among estuaries were not seen for all species, although it was not possible to sample the same sites within an estuary for all species. For bream, significant differences in otolith chemistry were found among all three estuaries, whereas for tarwhine the six estuaries were separated into three groups. For snapper, a number of estuaries could be separated, but there was some overlap for other estuaries. All three species were collected from the same site within one estuary and their otoliths analysed. Significant differences were found among species, but the implication of this finding remains unclear as the three species show differences in microhabitat use and may also differ in age. Because the elemental fingerprints of juveniles vary among estuaries or groups of estuaries, the nursery or recruitment estuary of adult fish could now be determined by analysing the juvenile region of adult otoliths. Thus, connectivity between estuaries and open coastal populations could be determined. Such information will have major implications for fisheries management because it will provide information on the distance that fish have moved from their recruitment estuary and the number of estuaries that contribute to each adult population.  相似文献   

3.
Analysing the estuarine use patterns of juveniles of marine migrant fish species is vital for identifying important sites for juveniles as well as the basic environmental features that characterize these sites for different species. This is a key aspect towards understanding nursery function. Various estuarine systems along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) were sampled during Spring and Summer 2005 and 2006. Juveniles of commercially important marine fish species Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax, predominantly 0-group individuals, were amongst the most abundant species and had distinct patterns of estuarine use as well as conspicuous associations with several environmental features. Juvenile occurrence and density varied amongst estuaries and sites within them, and differed with species. Sites with consistently high juvenile densities were identified as important juvenile sites (i.e. putative nursery grounds). Through generalized linear models (GLM), intra-estuarine variation in occurrence and density of each of the individual species was largely explained by environmental variables (temperature; salinity; depth; percentage of mud in the sediment; presence of seagrass; importance of intertidal areas; relative distance to estuary mouth; macrozoobenthos densities; and latitude). Decisive environmental factors defining important sites for juveniles varied depending on the system as a result of different environmental gradients, though there were common dominant features for each species regardless of the estuary considered. Analysed environmental variables in the GLM also accounted for inter-estuarine variation in species' occurrence and density. In several estuaries, the identified important juvenile sites were used by many of these species simultaneously and may be of increased value to both management and conservation. Overall, the variability in site features amongst estuaries highlighted the tolerance of these species to different available environmental conditions and provided fundamental information for future spatially explicit modelling of their distribution. This should ultimately enable the prediction of species response to habitat alterations.  相似文献   

4.
Information on the environmental characteristics of the juvenile habitat of many deposit-feeding sea cucumber species is limited, despite most fished species exhibiting rapid localised depletion. The current study combined large and small scale surveying techniques within a New Zealand harbour to identify areas with high densities of juvenile Australostichopus mollis, a commercially valuable aspidochirote holothurian. Data from detailed surveys were used to relate densities of juveniles and adults with measures of physical habitat characteristics including depth, sediment facies type, grain size range, as well as measures of chlorophyll-a, phaeopigment, carbon and nitrogen content of surface sediment. Results revealed a highly localised distribution of juvenile A. mollis focused on one site associated with an area of high adult density. Sites of high juvenile A. mollis density were characterised by sediment qualities favouring epibenthic detritivorous deposit feeding, including high nitrogen content, high phaeopigment:chlorophyll-a ratio and small grain size. The high-density juvenile site had facies that were further characterised by the presence of large shell fragments (>10 cm length) of the horse mussel (Atrina zelandica), which may provide a unique settlement microhabitat for early juveniles. Unlike some other sea cucumber species, juvenile A. mollis shows no distinct spatial separation from adult sea cucumbers, no association with dense macroalgae and no clear preference for shallower depths than adults. Overall, the results illustrate the highly localised pattern of recruitment of this species to a widely distributed adult population, which may help to explain the lack of previous observations of juveniles in this species. These results indicate the importance of identifying and protecting what appear to be very specific juvenile habitats in deposit-feeding sea cucumbers to ensure continuing recruitment to exploited populations.  相似文献   

5.
Survival and growth of early fish stages are maximal in coastal and estuarine habitats where natural shallow areas serve as nurseries for a variety of widely distributed species on the continental shelf. Processes occurring in these nursery grounds during the juvenile stage affect growth and may be important in regulating the year-class strength of fishes and population size. The need, therefore, exists to protect these essential fish habitats hence to develop indicators to estimate their quality.The purpose of the present study was to use the growth of juvenile sole as a means of comparing the quality of coastal and estuarine nursery habitats in the Bay of Biscay (France). These sole nurseries were clearly identified from studies based on trawl surveys carried out during the last two decades. The size of 1-group juveniles at the end of their second summer, as estimated from these surveys, is an indicator of growth in these habitats during the juvenile phase and can be used to compare habitat quality. A model taking into account the role of seawater temperature in spatial and interannual variations of juvenile size was developed to compare growth performance in the different nursery sectors.This study shows that the size of juvenile sole after two summers of life is not density-dependent, probably because the size of the population adapts to habitat capacity after high mortality during early-juvenile stages. Size is on one hand positively related to temperature and on the other hand higher in estuarine than in non-estuarine habitats. This high growth potential of juvenile fish in estuarine areas confirms the very important role played by estuaries as nursery grounds and the essential ecological interest of these limited areas in spite of their low water quality. If a general conclusion on habitat quality is to be reached about studies based on the growth of juvenile fish, it is necessary to use not only an integrative indicator of growth, like size, representative of the intrinsic habitat quality, but also more sensitive and less integrative means, such as otolith increments or caging experiments, which better respond to anthropogenic disturbance. Moreover, it is necessary to take juvenile densities into account.  相似文献   

6.
Connectivity is a critical property of marine populations, particularly for species with segregated juvenile and adult habitats. Knowledge of this link is fundamental in understanding population structure and dynamics. Young adults of commercially important fish species Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax were sampled off the Portuguese coast in order to establish preliminary evidence of estuarine nursery origins through otolith elemental fingerprints. Concentrations of Li, Na, Mg, K, Mn, Cu, Zn, Sr, Ba and Pb in the otolith section corresponding to juvenile's nursery life period were determined through laser ablation inductively coupled plasma mass spectrometry. Element: Ca ratios in coastal fish differed significantly amongst collection areas, except for Platichthys flesus, and were compared with the elemental fingerprints previously defined for age 0 juveniles in the main estuarine nurseries of the Portuguese coast. Identification of nursery estuaries was achieved for four of the species. Assigned nursery origins varied amongst species and differences in the spatial scale of fish dispersal were also found. Diplodus vulgaris was not reliably assigned to any of the defined nurseries. Overall, results give evidence of the applicability of estuarine habitat tags in future assessments of estuarine nursery role. Research developments on the links between juvenile and adult habitats should contribute for the integrated management and conservation of nurseries and coastal stocks.  相似文献   

7.
Juvenile Japanese flounder Paralichthys olivaceus usually inhabit high salinity inshore sandy areas. In June–August 1997, 25 individuals of juvenile Japanese flounder (33–75 mm total length) were collected in the Natori and Nanakita River estuaries in Sendai Bay, Japan. This is the first record of this species being collected in brackish estuaries in which salinities fluctuate from 0 to 30 over a spring tidal cycle. Factors of rainfall, river flow, or year class strength of Japanese flounder were unable to explain the unusual occurrence of this species in the estuaries. The collected juvenile Japanese flounder were considered to have migrated into the estuaries around the time of the passage of an unusually early typhoon that affected this area, indicating the possibility that this species utilizes estuaries for refuge from strong disturbance in its usual habitats. The juveniles fed mainly upon mysids both in the estuaries and the sandy beach area, indicating that estuaries can be a substitute nursery habitat for this species.  相似文献   

8.
Connectivity between estuarine fish nurseries and coastal adult habitats can be affected by variations in juvenile growth and survival. Condition indices are renowned proxies of juvenile nutritional status and growth rates and are valuable tools to assess habitat quality. Biochemical (RNA:DNA ratio) and morphometric (Fulton's condition factor K) condition indices were determined in juveniles of Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax collected in putative nursery areas of nine estuaries along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) in the Spring and Summer of two consecutive years (2005 and 2006) with distinct climatic characteristics. Individual condition showed significant variation amongst species. The combined use of both condition indices highlighted the low correlation between them and that RNA:DNA had a higher sensitivity. RNA:DNA varied between years but overall the site relative patterns in condition were maintained from one year to the other. Higher RNA:DNA values were found in Spring than in Summer in most species. Intra-estuarine variation also occurred in several cases. Species specific trends in the variability of condition amongst estuaries were highlighted. Some estuaries had higher juvenile condition for more than one species but results did not reveal an identical trend for all species and sites, hindering the hypotheses of one estuarine nursery promoting superior growth for all present species. Significant correlations were found between condition indices, juvenile densities and environmental variables (water temperature, salinity and depth) in the estuarine nurseries. These influenced juvenile nutritional condition and growth, contributing to the variability in estuarine nursery habitat quality. Management and conservation wise, interest in multi-species approaches is reinforced as assessments based on a single species may not reflect the overall nursery habitat quality.  相似文献   

9.
Post-settlement processes are a major focus in the study of the dynamics of marine populations and communities. Post-settlement movement of juveniles is an important, but often ignored, process which affects local predator–prey and competitive interactions. We used benthic suction sampling and pitfall traps to examine density and locomotory activity of Carcinus maenas juveniles in different intertidal habitat types in the Rio Mira Estuary, Portugal, to better understand intra-specific interactions in a system where density-dependent processes are known to regulate population dynamics. As expected, significantly higher densities of juvenile shore crabs were found from bare mud compared to densely vegetated habitats. At the time of sampling, small and intermediate stages together outnumbered by far the larger juveniles. Conversely, larger crabs were much more frequent than smaller ones in traps. A locomotory index (LI), i.e. the ratio between crab catch in pitfall traps and their density within their moving range, is proposed as a measure of movement. LI analyses indicated that: (1) movement is an order of magnitude higher in large than small juveniles and much higher in sparse than dense vegetation cover; (2) activity of small juveniles is mostly crepuscular, regardless of vegetation cover; and (3) movement of large juveniles is very limited in dense Zostera patches, but very high in sparsely vegetated areas, during the day and night. These results suggest that small juveniles are relatively protected under dense vegetation cover due to lower mobility of larger crabs, and provide evidence of temporal segregation of activity windows between juvenile crabs of different sizes, which may be a key mechanism to reduce cannibalism and therefore increase the carrying capacity of nursery habitats.  相似文献   

10.
Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal–estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different “feeding sub-populations”. Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal–estuarine ecosystem as nursery grounds.  相似文献   

11.
Caribbean spiny lobster (Panulirus argus) settle preferentially in macroalgal‐covered hard‐bottom habitat, but seagrass is more prevalent in Florida (United States) and the Caribbean, so even low settlement of lobsters within seagrass could contribute substantially to recruitment if post‐settlement survival and growth were high. We tested the role of seagrass and hard‐bottom habitats for P. argus recruitment in three ways. We first explored possible density‐dependent regulation of early benthic juvenile lobster survival within cages deployed in seagrass and hard‐bottom habitats. Second, we compared settlement and survival of P. argus in both habitats, by comparing the recovery of microwire‐tagged early benthic juveniles from patches of seagrass and hard‐bottom. Finally, we assessed the relative abundance of juvenile lobsters in each habitat by deploying artificial structures in seagrass sites and compared these data with data from similar deployments of artificial structures in hard‐bottom habitat in other years. More early benthic juvenile lobsters were recovered from cages placed in hard‐bottom than in seagrass, but mortality of the early benthic life stage was high in both habitats. In regional surveys, the mean number of lobsters recovered from artificial shelters deployed within seagrass was lower than in any year that we sampled hard‐bottom, indicating that fewer lobsters reside naturally in seagrass, particularly large juveniles >40 mm carapace length. The greater abundance (and likely survival) of juvenile P. argus that we observed in hard‐bottom habitat as opposed to seagrass, combined with previous studies demonstrating that postlarval P. argus are attracted to, settle in, and metamorphose more quickly in red macroalgae, confirm that macroalgae‐dominated hard‐bottom habitat appears to be the preferred and more optimal nursery for Caribbean spiny lobster.  相似文献   

12.
Twenty-one juvenile Cape stumpnose Rhabdosargus holubi (140–190 mm fork length) were tagged with internal acoustic transmitters in the lower, middle and upper reaches of the Kowie Estuary, South Africa. The movements of each fish were continually monitored from October 2014 to February 2015 using 22 stationary data-logging acoustic receivers situated at approximately equidistant intervals along the length of the estuary (21 km). Juvenile R. holubi spent the greatest proportion of time within the estuarine environment (83%), with the sea (16%) and riverine (1%) environments used to a much lesser extent. Within the estuarine environment, tagged individuals showed high levels of residency and fidelity to their capture and release sites; however, the degree of residency was dependent on the position of the release site, with batches in the upper and lower reaches exhibiting different space-use patterns. When larger juvenile R. holubi migrated back to the sea for the next phase of their life cycle, they generally did not return to the estuarine environment, thus indicating a permanent ontogenetic shift in habitat use with the onset of sexual maturity. This contribution to our understanding of the ecology of a ubiquitous estuarine fish further highlights the importance of estuarine habitats as nursery areas that require effective management.  相似文献   

13.
Populations of tropical sea cucumbers, harvested for bêche‐de‐mer, are in a perilous state of conservation, yet there remains a paucity of information on the biology of many harvested species. We examined the population biology of the commercially important curryfish, Stichopus herrmanni, across 2 years on Heron Reef, a protected zone in the Great Barrier Reef (GBR) Marine Park. Stichopus herrmanni, a species recently listed as vulnerable to extinction, is a major target species for the fishery operating in the GBR. The size class distribution and density of S. herrmanni were documented for six sites across Heron Reef. There was distinct spatial variation in the size and density of S. herrmanni across sites, with no significant difference between the 2 years. The smallest individuals found were 10 cm long, some of the only juvenile S. herrmanni documented in nature. Juvenile and sub‐adult populations were found along the leeward reef edge of Heron Reef, a habitat characterized by shallow channels of sand between inter‐tidal coral reef and crustose coralline algae (CCA). Juvenile nurseries of sea cucumbers are rarely observed in nature, making this an important observation for understanding the recruitment and population biology of S. herrmanni. The presence of juveniles in the consolidated CCA habitat each year in autumn following the summer spawning period, and the absence of small individuals several months later in spring, suggests an ontogenetic migration or displacement of these individuals to adult habitat. The distribution of larger S. herrmanni suggests intra‐reef connectivity and migration into deeper lagoon areas. This study contributes to understanding the population dynamics of this vulnerable species, a consideration for fisheries management in light of increasing global harvest.  相似文献   

14.
Estuaries serve as nursery grounds for many marine fish species. However increasing human activities within estuaries and surrounding areas lead to significant habitat loss for the juveniles and decrease the quality of the remaining habitats. This study is based on the data of 470 beam trawls from surveys that were conducted in 13 French estuaries for the purpose of the European Water Framework Directive. It aimed at testing the effects of anthropogenic disturbances on the nursery function of estuaries. With a multispecific approach based on ecological guilds, two fish metrics, abundance and species richness of Marine Juvenile migrant fishes, were used as proxies for the estuarine nursery function. Indices of heavy metal and organic contaminations were used to estimate anthropogenic disturbances impacting these estuaries. Fish metrics were described with statistical models that took into account: (a) sampling protocol, (b) estuarine features and (c) contamination. The results of these models showed that the fish metrics highly depend on the sampling protocol, and especially type of gear, depth and salinity, which highlights the necessity of considering such metrics at the sampling (trawl haul) scale. Densities and species richness of Marine Juvenile fishes appeared to be strongly and negatively correlated to contamination indices. These results are consistent with the hypothesis that human disturbances impact the nursery function of estuaries. Finally, the densities of Marine Juvenile migrant species appeared as a potential robust and useful fish indicator for the assessment of the ecological status of estuaries within the Water Framework Directive.  相似文献   

15.
Vulnerability to predation may be high for many megafaunal taxa in deep‐sea sedimentary habitats where physical heterogeneity is low. During ROV observations in a bathyal sediment plain off Central California, juveniles of the lithodid crab Neolithodes diomedeae were frequently observed on or under the holothurian (sea cucumber) Scotoplanes sp. A, and are hypothesized to benefit from this association as a nursery or refugium from predation. Ninety‐six percent (n = 574 of 599) of the juvenile N. diomedeae observed (density varied from 0.02–0.75/m2 among sites and seasons) in the study area were associated with Scotoplanes sp. A. Of the 2596 Scotoplanes sp. A observed (density varied from 0.48 to 25.90/m2), 22% were attended by at least one juvenile crab, and rarely two crabs (n = 4). Solitary N. diomedeae were rarely observed. This decapod–holothurian symbiosis appears to be largely commensal, with juvenile crabs (carapace width = 0.03–0.31 ×  holothurian length) observed on or beneath Scotoplanes sp. A in a habitat with few refugia from epibenthic predators. Other hypotheses may explain or enhance the potential benefits of the association for N. diomedeae, such as elevated food availability due to the activities of Scotoplanes sp. A. The relationship may be mutualistic if there is a benefit for the holothurian, including the removal of epizoic parasites. Ultimately, the nursery or other effects on the population dynamics of N. diomedeae may be minimal in low‐relief, sediment‐dominated habitats, as very few sub‐adult crabs were observed in the study area and were likely consumed upon outgrowing their refugia. While sedimentary habitats may be a sink for N. diomedeae populations, growth of juvenile crabs during their association with Scotoplanes sp. A should increase energy flow to its predator populations. This association has not been reported previously but may be expected in sediment‐dominated habitats where these species overlap.  相似文献   

16.
Abstract. The population densities, spatial distributions, size frequencies, growth rates, longevity and reproductive activities of sub‐populations of the sea urchin Lytechinus variegatus were investigated over a two‐year period. Sea urchins were examined in three habitats in Saint Joseph Bay, Florida, which is within the northern limits of their distribution. Densities of sea urchins, which ranged as high as 35 individuals ·?2, fluctuated seasonally at all sites and were higher in seagrass beds comprised of Thalassia testudinum than Syringodium filiforme or on a sand flat. A cold front caused large‐scale, catastrophic mortality among adult, and especially juvenile, sea urchins in nearshore habitats of the Bay in the spring of 1993, leading to a dramatic decline in sea urchin densities at the Thalassia seagrass site. The population recovered over 6 months at this site and was attributable to immigration of new adults. Juvenile recruitment displayed both interannual and site‐specific variability, with recruitment being highest in seagrass habitats in fall and spring. The most pronounced recruitment event occurred in fall 1993 at the Thalassia site. Spatial distributions of adult individuals ascertained monthly never varied from random in the seagrass beds (T. testudinum and S. filiforme) or during spring, summer or fall months on the sand flat. Nonetheless, aggregations of adult sea urchins were observed on the sand flat in the winter months and were associated with patchy distributions of plant food resources. Juvenile sea urchins (< 25 mm test diameter) exhibited aggregations at all sites and 67 % of all juveniles under 10 mm test diameter (91 of 165 individuals observed) were found under the spine canopies of adults. Measurements of the inducibility of spawning indicated peak gametic maturity in all three sub‐populations in spring and summer. Gonad indices varied between habitats and years, but distinct maxima were detected, particularly in spring 1993 and late summer 1994. The mean gonad index of individuals at the Syringodium seagrass site was 2‐ to 4‐fold higher than the other sites in spring 1993 and gonad indices were much higher at all sites in spring of 1993 than 1994. Estimates of growth based on changes in size frequency cohorts coupled with measurements of growth bands on lantern demipyramids indicated that L. variegatus in three habitats of Saint Joseph Bay have similar growth rates and attain a mean test diameter of approximately 35 mm in one year. In contrast to populations within the central biogeographical range of the species, which may attain test diameters up to 90 mm, the largest individuals recorded in Saint Joseph Bay were 60 mm in test diameter, and almost all individuals were no more than 45 mm in test diameter or two years of age. The demographics of L. variegatus in the northern limits of their distribution appear to be strongly influenced by latitudinally driven, low‐temperature events and secondarily by local abiotic factors, especially springtime low salinities, which may negatively impact larval development and recruitment.  相似文献   

17.
The stable carbon isotope ratios (δ13C) of the organic fraction of intertidal sediments in the Forth Estuary and the Firth of Forth, Scotland, were measured to determine if terrestrially derived carbon was present in the estuarine sediments. It was hypothesised that differences in the inputs from marine vs. terrestrial sources to the organic carbon of estuarine and marine sediments, as well as differences in ambient seawater stable oxygen isotope (δ18O) ratios between the estuary and the Outer Firth, would allow the use of these two stable isotopes as habitat markers for juvenile plaice (Pleuronectes platessa), to allow determination of nursery habitats. Muddy and sandy sediments from the estuary and sandy sediments from the Outer Firth were sampled and δ13C measured. Juvenile plaice were caught at two estuarine sites and at two Outer Firth sites and otoliths were removed for δ13C and δ18O analysis. The sandy sediments in the estuary showed a strong gradient of δ13C enrichment with distance down the estuary, while the muddy sediments showed a much shallower gradient. δ13C and δ18O measured in the carbonate of juvenile plaice otoliths showed no clear difference between otoliths of fish caught at one of the estuarine sites and at the two Outer Firth sites. However, the isotope ratios of both carbon and oxygen in plaice otoliths from the other estuarine site showed the expected trend of depletion in the heavier isotopes. While the measurements recorded here did not conclusively distinguish between otoliths from juveniles caught in the estuarine site and those caught in the other three sites, they show that stable isotopes have potential to distinguish between estuarine habitats with terrestrial carbon inputs, and coastal marine habitats with predominantly marine carbon inputs.  相似文献   

18.
Timing, microhabitat selection and behavior from the onset of settlement to recruitment to the adult population of juvenile fishes of the genus Diplodus (Pisces: Sparidae) were investigated along a rocky coastline in the Central Mediterranean Sea. The settlement periods in Diplodus sargus and Diplodus annularis were concentrated in spring, between late May and early June, and the recruits leave the nursery grounds in late September–October. Juvenile fishes of Diplodus puntazzo and Diplodus vulgaris showed a partial time overlapping, sharing the same zones in winter and early spring, from February to May. Multiple correspondence analysis showed that sea breams settle in well‐defined habitats. The smallest juveniles of D. sargus and D. puntazzo settled primarily in the shallowest sheltered pebbly areas, located in sciaphilous crannies covered by red algae. Diplodus vulgaris settlers were observed on a wider range of substrata: rock on sand, gravel and pebbles without algal cover or large boulders, generally in deeper waters. The intermediate‐size juveniles of D. sargus, D. puntazzo and D. vulgaris showed a preference for rocky substrata with substantial algal cover, with arborescent structures (Phaeophyceae). Diplodus annularis juveniles showed high fidelity to seagrass beds (Posidonia oceanica). The home range increased over time in all species, highlighting a loss of substrate specificity: larger juveniles were even observed in deeper and different microhabitats outside nursery grounds. This study suggests that shallow infra‐littoral rocky communities with photophilic algae play a key role in recruitment of sparid fishes, affecting the distribution and abundance of juvenile fishes and therefore determining the renewal of populations and the structure of adult assemblages.  相似文献   

19.
《Journal of Sea Research》2007,57(2-3):218-229
Plaice (Pleuronectes platessa) has spatially restricted nursery grounds located in shallow soft bottom areas, where the nursery areas only make up a small fraction of the species distribution range. The importance of different coastal areas for recruitment is expected to depend on the quality and size of the nursery grounds. This paper describes the geographical extension of plaice nursery grounds at a regional level along the Swedish west coast. Densities of juvenile plaice were used as the response variable of habitat quality and were compiled based on records from autumn sampling in the various regions. Different aspects of nursery ground quality were related to the density of 0-group plaice, to evaluate the contribution of different factors to the geographical pattern observed. Larval supply was found to be the most important component of nursery quality showing a close relationship with the density of juvenile plaice on a regional scale. The relative contribution of plaice recruits from Swedish nursery grounds to the Skagerrak/Kattegat stock was evaluated using historical data. Swedish nursery grounds were estimated to contribute 77% of the recruits to the adult stock in the area.  相似文献   

20.
Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant species S. senegalensis and P. flesus associated with the middle and upper estuary, while the remaining species were associated with the lower estuarine areas. The larval fraction exhibited distinct dynamics from the juvenile estuarine flatfish community. Larval flatfishes showed a strong seasonal structure mainly regulated by biological features as the spawning season and also by seasonal variations of water characteristics. On the other hand, juvenile flatfishes were markedly controlled by site specific characteristics such as sediments structure, distance from the river mouth and salinity regime. The present study emphasized the idea that the environmental control varies throughout the ontogenetic development, stressing the importance of integrating all the early life of a species in flatfish nursery studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号