首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Suspended solids are present in every river, but high quantities can worsen the ecological conditions of streams; therefore, effective monitoring and analysis of this hydrological variable are necessary. Frequency, seasonality, inter-correlation, extreme events, trends and lag analyses were carried out for peaks of suspended sediment concentration (SSC) and discharge (Q) data from Slovenian streams using officially monitored data from 1955 to 2006 that were made available by the Slovenian Environment Agency. In total more than 500 station-years of daily Q and SSC data were used. No uniform (positive or negative) trend was found in the SSC series; however, all the statistically significant trends were decreasing. No generalization is possible for the best fit distribution function. A seasonality analysis showed that most of the SSC peaks occurred in the summer (short-term intense convective precipitation produced by thunderstorms) and in the autumn (prolonged frontal precipitation). Correlations between Q and SSC values were generally relatively small (Pearson correlation coefficient values from 0.05 to 0.59), which means that the often applied Q–SSC curves should be used with caution when estimating annual suspended sediment loads. On average, flood peak Q occurred after the corresponding SSC peak (clockwise-positive hysteresis loops), but the average lag time was rather small (less than 1 day).
Editor M.C. Acreman; Associate editor Y. Gyasi-Agyei  相似文献   

2.
The sediment carrying capacity is one of the fundamental issues in sediment simulation.It is of great importance both in theory and practice to develop process-based approaches for the sediment carrying capacity for a wider range of silt-sand sediment.The current study focuses on the approach for depth-averaged concentration of silt-sand sediment under non-breaking wave conditions.By integrating process-based suspended sediment concentration(SSC) profiles,new synthetic expressions for depth-aver...  相似文献   

3.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

4.
《国际泥沙研究》2016,(3):205-211
Observations from field investigations showed that flow velocity greater than 3 m/s rarely occurs in nature, and high flow velocity stresses the bio-community and causes instability to the channel. For alluvial rivers without strong human disturbance, the flow velocity varies within a limited range, gen-erally below 3 m/s, while the discharge and wet area may vary in a range of several orders. This phe-nomenon was studied by analyzing hydrological data, including daily average discharge, stage, cross sections, and sediment concentration, collected from 25 stations on 20 rivers in China, including the Yangtze, Yellow, Songhua, Yalu, Daling, and Liaohe Rivers. The cross-sectional average velocity was cal-culated from the discharge and wet area using the continuity equation. For alluvial rivers, the wet cross section may self-adjust in accordance with the varying flow discharge so that the flow velocity does not exceed a limit value. In general, the average velocity increases with the discharge increase at low dis-charge. As the discharge exceeds the discharge capacity of the banks, any further increase in discharge does not result in a great increase in velocity. The average velocity approaches an upper limit as the discharge increases. This limit velocity, in most cases, is less than 3 m/s. Human activities, especially levee construction, disturb the limit velocity law for alluvial rivers. In these cases, the average velocity may be approximately equal to or higher than the limit velocity. The limit velocity law has profound morphological and ecological implications on alluvial rivers and requires further study. Rivers should be trained and managed by mimicking natural processes and meeting the limit velocity law, so as to maintain ecologically-sound and morphological stability.  相似文献   

5.
Abstract

The study of sediment load is important for its implications to the environment and water resources engineering. Four models were considered in the study of suspended sediment concentration prediction: artificial neural networks (ANNs), neuro-fuzzy model (NF), conjunction of wavelet analysis and neuro-fuzzy (WNF) model, and the conventional sediment rating curve (SRC) method. Using data from a US Geological Survey gauging station, the suspended sediment concentration predicted by the WNF model was in satisfactory agreement with the measured data. Also the proposed WNF model generated reasonable predictions for the extreme values. The cumulative suspended sediment load estimated by this model was much higher than that predicted by the other models, and is close to the observed data. However, in the current modelling, the ANN, NF and SRC models underestimated sediment load. The WNF model was successful in reproducing the hysteresis phenomenon, but the SRC method was not able to model this behaviour. In general, the results showed that the NF model performed better than the ANN and SRC models.

Citation Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. (2010) Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55(7), 1175–1189.  相似文献   

6.
A data-driven model based on an adaptive neuro-fuzzy inference system (ANFIS) was tested for the estimation of suspended sediment concentrations within watersheds influenced by agriculture. ANFIS models were developed using different combinations of inputs such as precipitation, streamflow, surface runoff and the watershed vulnerability index. A multi-watershed ANFIS model was also developed combining the datasets from all studied watersheds. The best results were obtained from a combination of precipitation, streamflow and watershed vulnerability index as input variables. Nash-Sutcliffe coefficients were improved for the multi-watershed ANFIS compared to watershed-specific ANFIS models. The introduction of the erosion vulnerability index significantly improved the ability of the ANFIS model to estimate suspended sediment concentrations within the watersheds. Furthermore, the inclusion of this index opens the possibility of using the ANFIS model to investigate the impact of land-use changes on sediment delivery.  相似文献   

7.
Abstract

Using daily suspended sediment and water discharge data, we calculated the current mean annual runoff and Specific Suspended Sediment Yield (SSY) for 66 mountainous and piedmont catchments in Chile. These catchments are located from the extreme north of Chile to Southern Patagonia and cover an exceptionally wide range of climates, slopes, and vegetation. The SSY ranges mainly between 0 and 700 t km-2 year-1 with some exceptions as high as 1780 t km-2 year-1. The SSY increases between the extreme north and 33°S and then decreases toward the south. Sediment and water discharge north of 33°S occur mainly during summer. Farther south the contribution of winter precipitation increases and predominates. When the SSY database is correlated with topographic, climatic and vegetation indices, it is found to correlate significantly with runoff and mean slope only. In order to concentrate on erosion processes in the mountain range, 32 mountainous catchments were selected along a strong north–south SSY gradient between 27°S and 40°S. From north to south, SSY increases strongly with runoff and then decreases, even while runoff keeps increasing. In catchments where SSY is low, although runoff is high, the mean slope is less than 40% and the vegetation cover is greater than 8%. For the other catchments, runoff variations explain 67% of the variance in sediment yields. Thus, SSY seems to be controlled by vegetation cover and slope thresholds. In addition, SSY also correlates with glacier cover. However, a correlation between SSY and seismicity, although possible, is ambiguous.

Citation Pepin, E., Carretier, S., Guyot, J. L. & Escobar, F. (2010) Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation. Hydrol. Sci. J. 55(7), 1190–1205.  相似文献   

8.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper compares flow intensity data obtained with different instruments from a variety of fluvial environments. It examines associations between the root-mean-square of longitudinal velocity fluctuations (flow intensity), local mean velocity, relative depth, and boundary resistance. Results indicate systematic differences in the behaviour of flow intensity which scale with respect to position in the boundary layer (deep sand-bedded rivers), boundary grain resistance (shallow river environments with coarse beds), and possibly form resistance (shallower sand-bedded rivers). Preliminary approaches to prediction and modelling of variations in flow intensity are suggested based upon linear regression relationships. Intensity values are also compared with theoretical and empirical limits to the use of Taylor's substitution, which allows time and frequency properties of a single-point velocity time series to be used to yield a flow length scale. In general, limits are exceeded in all environments for near-boundary flow measurements, but are met for y/d > 0·3 in most cases in sand-bed rivers, and for y/d > 0·4 in some gravel-bed environments. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Equilibrium is defined as a single-valued, temporally invariant functional relationship between the values of an output variable and the values of the input variable(s) in a geomorphic system. Disequilibrium occurs if the output deviates from the functional relationship by more than a consensual degree. Natural geomorphic variables are characterized by a relaxation time. Output variables are insensitive to cyclical inputs with frequencies much greater than the relaxation time, but can respond completely for sufficiently low frequencies. Rapid trends, recent step changes or pulse inputs, and intermediate frequency inputs can cause disequilibrium. The gradient of sand-bed alluvial channels (the output variable) is determined by sediment and water delivery from slopes (the input variables), and changes in this hydraulic regime require regrading by erosion and deposition. Initial stages of adjustment to changed regime in a long, unbranched channel with sediment and water delivery only at the upstream end propagate downstream, but later stages of adjustment occur simultaneously throughout the reach. In a dendritic channel network the gradient responds rather uniformly throughout the network to changes in regime during all stages of adjustment. The time scale of adjustment to changed regime depends upon the size of the channel network (or stream length), the sediment and water discharges, and to a lesser degree upon the magnitude of the change. Grade as defined by Mackin (1948) is synonymous with equilibrium as used in this paper if ‘a period of years’ is replaced by ‘a time period commensurate with the relaxation time of the gradient’. The use of the term grade is best restricted to a single-valued relationship between channel gradient and the hydraulic regime.  相似文献   

11.
A computational modeling analysis of the flow and sediment transport, and deposition in meandering-river models was performed. The Reynolds stress transport model of the FLUENTTM code was used for evaluating the river flow characteristics, including the mean velocity field and the Reynolds stress components. The simulation results were compared with the available experimental data of the river model and discussed. The Lagrangian tracking of individual particles was performed, and the transport and deposition of particles of various sizes in the meandering river were analyzed. Particular attention was given to the sedimentation patterns of different size particles in the river-bend model. The flow patterns in a physical river were also studied. A Froude number based scale ratio of 1:100 was used, and the flow patterns in the physical and river models are compared. The result shows that the mean-flow quantities exhibit dynamic similarity, but the turbulence parameters of the physical river are different from the model. More strikingly, the particle sedimentation features in the physical and river models do not obey the expected similarity scaling.  相似文献   

12.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The vertical concentration profiles in non-equilibrium sediment transport processes generally deviate from the equilibrium concentration distribution of suspended sediment. The non-equilibrium concentration profile formulas currently available are those of Han and Brown, respectively. However, the complexity of these formulas limits their use in practical calculations. To improve the usefulness of these formulas, the unknown parameters in Han’s formula are reduced from three to two, and the thre...  相似文献   

14.
In spite of the important relationship between sediment particle size and the transport/deposition of adsorbed pollutants in fluvial systems, little information regarding the size characteristics of suspended sediment transported by southern Ontario Great Lakes tributaries is currently available. This paper examines long-term sediment and hydrometric data collected by the Water Resources Branch of Environment Canada in order to provide information on (1) typical particle size distributions of suspended sediment, (2) relationships between source material and particle size characteristics of suspended sediment, and (3) temporal variation in the particle size characteristics of suspended sediment from six southern Ontario rivers. Results illustrate the complex behaviour and variability of sediment particle size transport in these rivers and demonstrate the need for a better understanding of seasonal effects on sediment availability and conveyance processes in fluvial systems.  相似文献   

15.
Reliable modeling of river sediments transport is important as it is a defining factor of the economic viability of dams, the durability of hydroelectric-equipment, river susceptibility to pollution, suitability for navigation, and potential for aesthetics and fish habitat. The capability of a new machine learning model, fuzzy c-means based neuro-fuzzy system calibrated using the hybrid particle swarm optimization-gravitational search algorithm(ANFIS-FCM-PSOGSA) in improving the estimation accur...  相似文献   

16.
The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long-term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long-term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Discharge and sediment load data for several stations along the Ganga River and its major tributaries in the western Ganga plains (WGP) for a period of ~30 years have been analysed to understand the hydrological characteristics and sediment dynamics. In terms of hydrology, the rivers are less flood‐prone than believed, exceeding bankfull discharges less frequently than the expected 1.5 year return interval. This has been attributed to the rivers of this region occupying incised valleys formed in the Late Quaternary period. Rivers draining the WGP are supply‐limited systems compared to those draining the eastern Ganga plains (EGP) which have been characterized as transport‐limited systems. We suggest that such geomorphic diversity as a function of spatial variability in precipitation regime and hinterland geology has existed for at least the Late Quaternary period and they in turn influence the modern day hydrology of the river systems in a significant way. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment fingerprinting appears to offer a valuable alternative to direct monitoring for elucidating the provenance of suspended sediment and the relative importance of spatial zones or subcatchments comprising larger (>500 km2) drainage basins. Against this background, a quantitative composite fingerprinting technique, incorporating both statistically verified multicomponent signatures and a multivariate sediment-mixing model, has been employed to determine the spatial origin of contemporary suspended sediment transported from the upper and middle reaches of the River Exe (601 km2) and River Severn (4325 km2) basins, UK. Spatial origin is addressed in terms of the relative contribution from three distinct geological subareas constituting each study basin. The consistency of the composite fingerprinting approach is examined using the estimates for mean and seasonal variations in source area contributions and also a comparison between the results obtained for individual flood events and alternative lines of evidence provided by flood travel times and the spatial distribution of precipitation. It is argued that fingerprinting estimates for sediment provenance are consistent with existing information on suspended sediment yields from different subcatchments within the study basins, although in the Severn, the role of storage and remobilization in producing signature ‘averaging’ may complicate comparison of the fingerprinting data with typical floodwater routing times. Validation represents the greatest problem for the cost–benefit of fingerprinting and scope still exists for further refinement of the procedures involved. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2013,58(1):135-146
Abstract

Based on data from river gauging stations, the multi-year variations in suspended sediment flux (SSF) from China's nine major rivers to the sea were examined. The decadal SSF decreased by 70.2%: from 1.81 Gt/year for 1954–1963 to 0.54 Gt/year for 1996–2005. The decrease in SSF was more dramatic in the arid northern region than in the wet southern region; from north to south, the SSF decreased by 84% in the Yellow River, 42% in the Yangtze River, and 22% in the Pearl River. Dam construction was the principal cause for the decrease in SSF. At present, approximately 2 Gt/year of sediment is trapped in the reservoirs within the nine river basins. Reduced precipitation and increased water extraction and sand mining have also played a role in the decrease in SSF. Although water and sediment conservation programmes have not counteracted the influence of deforestation, they have enhanced the decrease in SSF in recent years. It is concluded that human activity has become a governing factor on riverine sediment delivery to the sea in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号