首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

2.
In this study we estimate diffusive nutrient fluxes in the northern region of Cape Ghir upwelling system (Northwest Africa) during autumn 2010. The contribution of two co-existing vertical mixing processes (turbulence and salt fingers) is estimated through micro- and fine-structure scale observations. The boundary between coastal upwelling and open ocean waters becomes apparent when nitrate is used as a tracer. Below the mixed layer (56.15±15.56 m), the water column is favorable to the occurrence of a salt finger regime. Vertical eddy diffusivity for salt (Ks) at the reference layer (57.86±8.51 m, CI 95%) was 3×10−5 (±1.89×10−9, CI 95%) m2 s−1. Average diapycnal fluxes indicate that there was a deficit in phosphate supply to the surface layer (6.61×10−4 mmol m−2 d−1), while these fluxes were 0.09 and 0.03 mmol m−2 d−1 for nitrate and silicate, respectively. There is a need to conduct more studies to obtain accurate estimations of vertical eddy diffusivity and nutrient supply in complex transitional zones, like Cape Ghir. This will provide us with information about salt and nutrients exchange in onshore–offshore zones.  相似文献   

3.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

4.
Recent efforts to construct global ocean budgets for carbon have recognized the importance of continental margins. In this study, we constructed budgets for the Strait of Georgia, a temperate, North American west coast basin that receives the inflow of one of the world's major rivers. Drawing from published and unpublished data, we have estimated the magnitude of the various sources and sinks of fresh water, sediment and organic carbon.The Fraser River is the dominant source of fresh water and particles to the strait, contributing approximately 73% of the 158×109 m3 year−1 of water and 64% of the 30×109 kg year−1 of particles. Other rivers supply most of the remainder, while rain, groundwater and anthropogenic sources of water and particles are negligible in comparison. Fresh water escapes the Strait of Georgia through Juan de Fuca Strait, but particulate inputs are approximately balanced by sedimentation within the greater Strait of Georgia, implying almost complete trapping of particles.Dissolved and particulate organic carbon are derived mainly from in situ primary production (855×106 kg year−1) and from the Fraser River (550×106 kg year−1). Other rivers contribute 200×106 kg year−1 of organic carbon, and anthropogenic sources (ocean dumping, sewage, pulp mills and aquaculture) a further 119×106 kg year−1. Particulate organic carbon is predominantly buried (428×106 kg year−1) or oxidized (90×106 kg year−1) in the sediments of the strait. About 70% of the organic carbon that enters or is produced in the strait is dissolved. Most of the dissolved organic carbon is oxidized within the strait (784×106 kg year−1), but the remainder (400×106 kg year−1) is exported to the Pacific Ocean. Although the particulate organic carbon budget by itself implies net autotrophy, dissolved organic carbon oxidation may make the Strait of Georgia slightly net heterotrophic.  相似文献   

5.
Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September–02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043–0.47×109 dm−3) and viruses (range 0.68–11×109 dm−3) were correlated (r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5–70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m−2 exceeding that of phytoplankton (0.005–0.2 g C m−2) or viruses (0.02–0.05 g C m−2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0–1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0–1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.  相似文献   

6.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

7.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

8.
Marginal seas provide a globally important interface between land and interior ocean where organic carbon is metabolized, buried or exported. The trophic status of these seas varies seasonally, depending on river flow, primary production, the proportion of dissolved to particulate organic carbon and other factors. In the Strait of Georgia, about 80% of the organic carbon in the water column is dissolved. Organic carbon enters at the surface, with river discharge and primary production, particularly during spring and summer. The amount of organic carbon passing through the Strait (∼16 × 108 kg C yr−1) is almost twice the standing inventory (∼9.4 × 108 kg C). The organic carbon that is oxidized within the Strait (∼5.6 × 108 kg yr−1) presumably supports microbial food webs or participates in chemical or photochemical reactions, while that which is exported (7.2 × 108 kg yr−1) represents a local source of organic carbon to the open ocean.  相似文献   

9.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

10.
The distribution of dissolved iron and its chemical speciation (organic complexation and redox speciation) were studied in the northeastern Atlantic Ocean along 23°W between 37 and 42°N at depths between 0 and 2000 m, and in the upper-water column (upper 200 m) at two stations further east at 45°N10°W and 40°N17°W in the early spring of 1998. The iron speciation data are here combined with phytoplankton data to suggest cyanobacteria as a possible source for the iron binding ligands. The organic Fe-binding ligand concentrations were greater than that of dissolved iron by a factor of 1.5–5, thus maintaining iron in solution at levels well above it solubility. The water column distribution of the organic ligand indicates in-situ production of organic ligands by the plankton (consisting mainly of the cyanobacteria Synechococcus sp.) in the euphotic layer and a remineralisation from sinking biogenic particles in deeper waters. Fe(II) concentrations varied from below the detection limit (<0.1 nM) up to 0.55 nM but represented only a minor fraction of 0% to occasionally 35% of the dissolved iron throughout the water column. The water column distribution of the Fe(II) suggests biologically mediated production in the deep waters and photochemical production in the euphotic layer. Although there was no evidence of iron limitation in these waters, the aeolian iron input probably contributed to a shift in the phytoplankton assemblage towards increased Synechococcus growth.  相似文献   

11.
Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m−2 d−1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m−2 d−1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre.  相似文献   

12.
We observed the origin, behavior, and flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), colored dissolved organic matter (CDOM), and dissolved inorganic nitrogen (DIN) in the subterranean estuary of a volcanic island, Jeju, Korea. The sampling of surface seawater and coastal groundwater was conducted in Hwasun Bay, Jeju, in three sampling campaigns (October 2010, January 2011, and June 2011). We observed conservative mixing of these components in this subterranean environment for a salinity range from 0 to 32. The fresh groundwater was characterized by relatively high DON, DIN, and CDOM, while the marine groundwater showed relatively high DOC. The DON and DIN fluxes through submarine groundwater discharge (SGD) in the groundwater of Hwasun Bay were estimated to be 1.3 × 105 and 2.9 × 105 mol d 1, respectively. In the seawater of Hwasun Bay, the groundwater-origin DON was almost conservative while about 91% of the groundwater-origin DIN was removed perhaps due to biological production. The DON flux from the entire Jeju was estimated to be 7.9 × 108 mol yr 1, which is comparable to some of the world's large rivers. Thus, our study highlights that DON flux through SGD is potentially important for delivery of organic nitrogen to further offshore while DIN is readily utilized by marine plankton in near-shore waters under N-limited conditions.  相似文献   

13.
A transect of CTD profiles crossing the North Atlantic Current (NAC) along WOCE line ACM6 near 42.5°N during August 1–7, 1993, provides geostrophic shear velocity profiles, which were absolutely referenced using simultaneous POGO transport float measurements and velocity measurements from a ship-mounted acoustic doppler current profiler (ADCP). The NAC absolute transport was 112±23×106 m3 s−1, which includes a portion of the transport of the Mann Eddy, a large permanent anticyclonic eddy commonly adjacent to the NAC. The NAC transport estimated relative to a level of no motion at the bottom would have underestimated the true total absolute transport by 20%. A surprisingly large 58×106 m3 s−1 flowed southward just inshore of the NAC. This flow, centered near 1500 dbars about 200 km offshore of the shelf-break, was fairly barotropic with a peak velocity of greater than 20 cm s−1, and the water mass characteristics were of Labrador Sea Water. These absolute transport observations suggest southward recirculation inshore of the NAC at 42.5°N and a stronger NAC than has previously been observed.  相似文献   

14.
Nutrient inputs associated with coastal population growth threaten the integrity of coastal ecosystems around the globe. In order to assess the threat posed by rapid growth in tourism, we analyzed the nutrient concentrations as well as the δ15N of NO3 and macrophytes to detect wastewater nitrogen (N) at 6 locations along a groundwater-dominated coastal seagrass bed on the Caribbean coast of Mexico. We predicted that locations with greater coastal development would have higher concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (P), as well as δ15N of NO3, reflecting wastewater sources of N. However, concentrations of NO3 were not significantly different between developed (3.3 ± 5.3 μM NO3) and undeveloped (1.1 ± 0.7 μM) marine embayments. The most important control on DIN concentration appeared to be mixing of fresh and salt water, with DIN concentrations negatively correlated with salinity. The δ15N of NO3 was elevated at an inland pond (7.0 ± 0.42‰) and a hydrologically-connected tide pool (7.6 ± 0.57‰) approximately 1 km downstream of the pond. The elevated δ15N of NO3 at the pond was paralleled by high δ15N values of Cladophora sp., a ubiquitous green alga (10 ± 1‰). We hypothesize that inputs of nitrogen rich (NO3 > 30 μM) groundwater, characterized by 15N enriched signatures, flow through localized submarine groundwater discharges (SGD) and contribute to the elevated δ15N signatures observed in many benthic macrophytes. However, changes in nitrogen concentrations and isotope values over the salinity gradient suggest that other processes (e.g. denitrification) could also be contributing to the 15N enrichments observed in primary producers. More measurements are needed to determine the relative importance of nitrogen transformation processes as a source of 15N to groundwaters; however, it is clear that continued inputs of anthropogenic N via SGD have the potential to severely impact ecologically and economically valuable seagrass meadows and coral reefs along the Caribbean coast of Mexico.  相似文献   

15.
Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 μmol site mg−1 C, and a log K′ of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu–FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 μg l−1. However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 μg l−1 in the no-FA control to 137.4 μg l−1 in the 20 mg l−1 FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu–FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.  相似文献   

16.
Dissolved trace element distributions near Elephant Island in the Drake Passage show extremely high levels of dissolved Fe and Mn in waters above the shelf. The entrainment of this enriched shelf water by the Fe-poor Antarctic Circumpolar Current (ACC) as it passes through the Shackleton Gap delivers an estimated 2.8×106 mol yr−1 dissolved Fe to the offshore waters of the Drake Passage. The magnitude and spatial distribution of dissolved Fe, Mn and Al over the shelf are consistent with a diagenetically produced sedimentary source, but are inconsistent with eolian or upwelling sources. The systematics of the Mn and Fe concentrations suggest that there are two distinct sources of dissolved Fe to the surface waters of this region. The highest Fe concentrations are associated with Bransfield Strait water, which can be identified by its characteristic temperature and salinity (T/S) properties both inside the Bransfield Strait and in the Bransfield Current outflow between Elephant and Clarence Islands. Most of the shelf area is dominated by a second water type with T/S properties that are typical of modified Antarctic Surface Water, which while also enriched has a lower Fe:Mn ratio.The predominantly linear relationships between the Fe and Mn concentrations at the stations in each of these water mass types suggest that the distribution of these elements is largely controlled by physical mixing processes and that biological removal of Fe on the shelf, while certainly occurring, is limited, perhaps as a result of rapid physical flushing processes and relatively slow biological growth rates. The consequent export of large quantities of this shelf-derived Fe into the ACC is likely responsible for the extensive regions of enhanced primary production seen in satellite imagery downstream of the Drake Passage.  相似文献   

17.
Photochemical production rates of hydrogen peroxide (H2O2) were determined in Antarctic waters during two research cruises. The first cruise was from mid-October to mid-November, 1993, in the confluence of the Weddell and Scotia Seas, and the second cruise was in December, 1994, along the coast of the Antarctic Peninsula. During these cruises, midday sea-surface production rates ranged from 2.1 to 9.6 nM h−1, with an average rate of 4.5 nM h−1. Production rates were consistently smaller than rates determined at lower latitudes (>9 nM h−1), primarily due to the colder temperatures and lower ultraviolet irradiances in polar waters. In situ production rates were determined with a free-floating drifter that was deployed for 12–14 h. Production rates, averaged over the deployment time, were highest at or near the surface (ca. 2.4–3.5 nM h−1) and decreased rapidly with depth to 0.1–0.7 nM h−1 at 10–20 m. The decrease in production rates with depth generally paralleled the decrease in ultraviolet irradiance in the water column. Production rates of hydrogen peroxide in Antarctic seawater were largely controlled by the ultraviolet irradiance in the water column, although there was some evidence for production in the blue region of the solar spectrum. A laboratory study was conducted to determine the wavelength dependence of the apparent quantum yield for the photochemical formation of hydrogen peroxide in Antarctic waters. Apparent quantum yields determined at 0°C decreased from 0.74×10−3 mol einstein−1 at 290 nm to 1.0×10−5 mol einstein−1 410 nm. At 20°C, apparent quantum yields for the photochemical production of hydrogen peroxide were within a factor of two of apparent quantum yields determined in temperate waters at 20–25°C. Sunlight-normalized H2O2 production rates were determined as a function of wavelength using noontime irradiance data from Palmer Station, Antarctica. A decrease in stratospheric ozone from 336 to 151 Dobson units resulted in a predicted 19–42% increase in the photoproduction of H2O2 at the sea surface in Antarctic waters. The magnitude of this increase depends on the concentration and absorbance characteristics of dissolved organic matter in the photic zone, as well as on other factors such as cloudiness and decreasing solar zenith angle that tend to lower photochemical rates offsetting increases due to stratospheric ozone depletion.  相似文献   

18.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

19.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

20.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号