首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of fire danger maps play a vital role in forest fire management like forest fire research, locating lookout towers, risk assessment and for various other simulation studies. The present study addresses remote sensing and GIS applications in generating fire danger maps for tropical deciduous forests. Fire danger variables such as fuel type, topography, temperature, and relative humidity have been used in modeling fire danger. Information on local climate patterns and past fire records has been used to derive fire frequency map of the study area. Intermediate indices were derived using multiple regressions, where fire frequency data is taken as dependent variable. Results indicate that forests near human settlements are more vulnerable to forest fires.  相似文献   

2.
Fire danger assessment is a vital issue to alleviate the impacts of wildland fires. In this study, a fire danger assessment system is proposed, which extensively uses geographical databases to characterize the spatial variations of fire danger conditions in Iran. This assessment requires three steps: (i) generation of the required input variables, (ii) methods to integrate those variables for creating synthetic indices and (iii) validation of those indices versus fire occurrence data. This fire danger model is based on previous works but adapted to Iranian conditions. It includes an estimation of the fire ignition potential (both considering human and climatic factors) and fire propagation potential. The former was generated from a logistic regression approach based on a wide range of input variables. The fire propagation probability was estimated from the Flammap fire behavior model. A first stage for validation of our fire danger system was based on comparing the estimated danger values to actual fire occurrence, based on satellite detected active fires and burned areas. The logistic regression model for fire ignition probability estimated 72.7% of true ignitions. Detected hotspots occurred more frequently in areas with higher fire ignition probability (average value: 0.65) than non hotspots (average value: 0.4). Propagation probability showed higher values for areas with higher proportion of burned area (r = 0.68, p < 0.001).  相似文献   

3.
The main purpose of this study is to explore the relationship between three field-based fire severity indices (Composite Burn Index-CBI, Geometrically structure CBI, weighted CBI) and spectral indices derived from Sentinel 2A and Landsat-8 OLI imagery on a recent large fire in Thasos, Greece. We employed remotely sensed indices previously used from the remote sensing fire community (Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), differenced NDVI, differenced NBR, relative differenced NBR, Relativized Burn Ratio) and seven Sentinel 2A-specific indices considering the availability of spectral information recorded in the red-edge spectral region. The statistical correlation indicated a slightly stronger relationship between the differenced NBR and the GeoCBI for both Sentinel 2A (r = 0.872) and Landsat-8 OLI (r = 0.845) imagery. Predictive local thresholds of dNBR values showed slightly higher classification accuracy for Sentinel 2A (73.33%) than Landsat-8 OLI (71.11%), suggesting the adequacy of Sentinel 2A for forest fire severity assessment and mapping in Mediterranean pine ecosystems. The evaluation of the classification thresholds calculated in this study over other fires with similar pre-fire conditions could contribute in the operational mapping and reconstruction of the historical patterns of fire severity over the Eastern Mediterranean region.  相似文献   

4.
Abstract

A method of analyzing remotely sensed data, a geographic information system, and an intelligent fire management system have been developed to provide integrated resource data for fire and other resources management. Natural and cultural features were digitized from 1:50,000 topographic maps using a geographic information system (GIS) to cover the 29 communities below the tree line in the western Canadian Arctic. Landsat Thematic Mapper data covering the same area were classified into land cover or fuel types. Detailed information on each fire such as location, area burned, date of discovery, fire number, fire zone, fire class and source of ignition was obtained and added to each map sheet as attribute data. A generalized vegetation cover map using NOAA AVHRR data was also obtained. The Intelligent Fire Management Information System (IFMIS) integrates relational data bases, geographic information display, and expert systems. It also has a spatial analysis procedure for forest fire preparedness planning. Linking the weather to the forest fuels through the Fire Weather Index system (FWI) and the Fire Behaviour Prediction System (FBPS), fire danger and fire behaviour are calculated and displayed, cell‐by‐cell. Values‐at‐risk and fire suppression resources are used in the dispatching and planning component of the system. The planning component allows the user to evaluate the coverage of fire suppression resources under the prevalent forecast fire behaviour conditions. Through the integration of data from the above systems, a set of maps were created which were used to analyze fire behaviour potential, identify fire hazards, and provide a basis for settlement protection strategies within the context of other land use activities such as wildlife harvesting and recreational activities.  相似文献   

5.
Remote sensing indices of burn area and fire severity have been developed and tested for forest ecosystems, but not sparsely vegetated, desert shrub-steppe in which large wildfires are a common occurrence and a major issue for land management. We compared the performance of remote sensing indices for detecting burn area and fire severity with extensive ground-based cover assessments made before and after the prescribed burning of a 3 km2 shrub-steppe area. The remote sensing indices were based on either Landsat 7 ETM+ or SPOT 5 data, using either single or multiple dates of imagery. The indices delineating burned versus unburned areas had better overall, User, and Producer's accuracies than indices delineating levels of fire severity. The Soil Adjusted Vegetation Index (SAVI) calculated from SPOT had the greatest overall accuracy (100%) in delineating burned versus unburned areas. The relative differenced Normalized Burn Ratio (RdNBR) using Landsat ETM+ provided the highest accuracies (73% overall accuracy) for delineating fire severity. Though SPOT's spatial resolution likely conferred advantages for determining burn boundaries, the higher spectral resolution (particularly band 7, 2.21 μm) of Landsat ETM+ may be necessary for detecting differences in fire severity in sparsely vegetated shrub-steppe.  相似文献   

6.
Quantification of forest cover is essential as a tool to stimulate forest management and conservation. Image compositing techniques that sample the most suited pixel from multi-temporal image acquisitions, provide an important tool for forest cover detection as they provide alternatives for missing data due to cloud cover and data discontinuities. At present, however, it is not clear to which extent forest cover detection based on compositing can be improved if the source imagery is firstly corrected for topographic distortions on a pixel-basis. In this study, the results of a pixel compositing algorithm with and without preprocessing topographic correction are compared for a study area covering 9 Landsat footprints in the Romanian Carpathians based on two different classifiers: Maximum Likelihood (ML) and Support Vector Machine (SVM). Results show that classifier selection has a stronger impact on the classification accuracy than topographic correction. Finally, application of the optimal method (SVM classifier with topographic correction) on the Romanian Carpathian Ecoregion between 1985, 1995 and 2010 shows a steady greening due to more afforestation than deforestation.  相似文献   

7.
Remote sensing technologies are an ideal platform to examine the extent and impact of fire on the landscape. In this study we assess that capacity of the RapidEye constellation and Landsat (Thematic Mapper and Operational Land Imager to map fine-scale burn attributes for a small, low severity prescribed fire in a dry Western Canadian forest. Estimates of burn severity from field data were collated into a simple burn index and correlated with a selected suite of common spectral vegetation indices. Burn severity classes were then derived to map fire impacts and estimate consumed woody surface fuels (diameter ≥2.6 cm). All correlations between the simple burn index and vegetation indices produced significant results (p < 0.01), but varied substantially in their overall accuracy. Although the Landsat Soil Adjusted Vegetation Index provided the best regression fit (R2 = 0.56), results suggested that RapidEye provided much more spatially detailed estimates of tree damage (Soil Adjusted Vegetation Index, R2 = 0.51). Consumption estimates of woody surface fuels ranged from 3.38 ± 1.03 Mg ha−1 to 11.73 ± 1.84 Mg ha−1, across four derived severity classes with uncertainties likely a result of changing foliage moisture between the before and after fire images. While not containing spectral information in the short wave infrared, the spatial variability provided by the RapidEye imagery has potential for mapping and monitoring fine scale forest attributes, as well as the potential to resolve fire damage at the individual tree level.  相似文献   

8.
In this study, an object-based image analysis (OBIA) approach was developed to classify field crops using multi-temporal SPOT-5 images with a random forest (RF) classifier. A wide range of features, including the spectral reflectance, vegetation indices (VIs), textural features based on the grey-level co-occurrence matrix (GLCM) and textural features based on geostatistical semivariogram (GST) were extracted for classification, and their performance was evaluated with the RF variable importance measures. Results showed that the best segmentation quality was achieved using the SPOT image acquired in September, with a scale parameter of 40. The spectral reflectance and the GST had a stronger contribution to crop classification than the VIs and GLCM textures. A subset of 60 features was selected using the RF-based feature selection (FS) method, and in this subset, the near-infrared reflectance and the image acquired in August (jointing and heading stages) were found to be the best for crop classification.  相似文献   

9.
NOAA-AVHRR数据在吉林省东部林火信息提取中的应用   总被引:4,自引:0,他引:4  
概述了利用NOAA-AVHRR数据进行林火监测的原理和4种方法。针对吉林省东部的森林火灾,运用4种方法进行了火点信息提取与分析,最后对阈值法进行了改进,提取精度达到了89.2%。分析了NOAA-AVHRR应用于林火遥感监测的可行性和不足。  相似文献   

10.
WorldView-2纹理的森林地上生物量反演   总被引:1,自引:0,他引:1  
使用高空间分辨率卫星WorldView-2的多光谱遥感影像,构建植被指数和纹理因子等遥感因子与森林地上生物量的关系方程,并计算模型估测精度和均方根误差,探索高分辨率数据的光谱与纹理信息在温带森林地上生物量估测应用中的潜力。以黑龙江省凉水自然保护区温带天然林及天然次生林为研究对象,通过灰度共生矩阵(GLCM)、灰度差分向量(GLDV)及和差直方图(SADH)对高分辨率遥感影像进行纹理信息提取,并利用外业调查的74个样地地上生物量与遥感因子建立参数估计模型。提取的遥感因子包括6种植被指数(比值植被指数RVI、差值植被指数DVI、规一化植被指数NDVI、增强植被指数EVI、土壤调节植被指数SAVI和修正的土壤调节植被指数MSAVI)以及3类纹理因子(GLCM、GLDV和SADH)。为避免特征变量个数较多对估测模型造成过拟合,利用随机森林算法对提取的遥感因子进行特征选择,将最优的特征变量输入模型参与建模估测。采用支持向量回归(SVR)进行生物量建模及验证,结果显示选入模型的和差直方图均值(sadh_mean)、灰度共生矩阵方差(glcm_var)和差值植被指数(DVI)等遥感因子对森林地上生物量有较好的解释效果;植被指数+纹理因子组合的模型获得较精确的AGB估算结果(R2=0.85,RMSE=42.30 t/ha),单独使用植被指数的模型精度则较低(R~2=0.69,RMSE=61.13 t/ha)。  相似文献   

11.
基于MODIS数据的火险潜在指数(FPI)及其应用研究   总被引:2,自引:0,他引:2  
死、活可燃物含水率大小决定森林点燃的难易度,是判断林火能否发生、进行林火预报的重要因子。本文应用火险潜在指数(FPI,Fire Potential Index)模型,从这2个方面分析研究可燃物湿度对林火发生的影响。利用MODIS遥感数据提取FPI模型所需因素(气象数据: 相对湿度、温度; 植被数据: 10 h时滞可燃物湿度、归一化水分指数、植被绿度),并将获得的2004年10月黑龙江省和2008年3月南方几省的气象、植被数据输入FPI模型,得到火险指数和火险等级划分。实践证明,应用该模型能够提高火险在时间和地理分布上的预报能力及预防技术。  相似文献   

12.
Forest fires are considered one of the most highly damaging and devastating of natural disasters, causing considerable casualties and financial losses every year. Hence, it is important to produce susceptibility maps for the management of forest fires so as to reduce their harmful effects. The purpose of this study is to map the susceptibility to forest fires over Nowshahr County in Iran, using an integrated approach of index of entropy (IOE) with fuzzy membership value (FMV), frequency ratio (FR), and information value (IV) with a comparison of their precision. The spatial database incorporated the inventory of forest fire and conditioning factors. As a whole, 41 forest fire locations were identified. Out of these, 29 locations (≈70%) were randomly chosen for the forest fire susceptibility modeling (FFSM), and the remaining 12 locations (≈30%) were utilized for the validation of the models. Subsequently, utilizing FMV‐IOE, FR‐IOE, and IV‐IOE models, forest fire susceptibility maps were acquired. Finally, the modeling ability of the models for FFSM was assessed using an area under the receiver operating characteristic (AUROC) curve. The results manifested that the prediction accuracy of the FMV‐IOE model is slightly higher than that of the FR‐IOE and IV‐IOE models. The incorporation of IOE with FMV, FR, and IV models had AUROC values of 0.890, 0.887, and 0.878, respectively. The resulting FFSM can be effective in fire repression resource planning, sustainable development, and primary warning in regions with similar conditions.  相似文献   

13.
基于ArcEngine的林火监测云图坐标转换及配准功能的研发   总被引:1,自引:0,他引:1  
采用二次开发语言VB,通过基于ArcEngine的组件开发模式,对林火监测云图进行配准及坐标转换,使其能够与基础地理信息数据叠加显示,准确判断火点的属地信息等相关地理信息以及相关防火、扑火信息,并且可以依托地理信息系统对火点信息进行管理。使林火监测云图与地理信息系统高度融合,增加了地理信息系统数据的来源,提高了云图的使用效率。最终促进了森林防火工作的信息化和现代化。  相似文献   

14.
Abstract

A procedure for continental‐scale mapping of burned boreal forest at 10‐day intervals was developed for application to coarse resolution satellite imagery. The basis of the technique is a multiple logistic regression model parameterized using 1998 SPOT‐4 VEGETATION clear‐sky composites and training sites selected across Canada. Predictor features consisted of multi‐temporal change metrics based on reflectance and two vegetation indices, which were normalized to the trajectory of background vegetation to account for phenological variation. Spatial‐contextual tests applied to the logistic model output were developed to remove noise and increase the sensitivity of detection. The procedure was applied over Canada for the 1998‐2000 fire seasons and validated using fire surveys and burned area statistics from forest fire management agencies. The area of falsely mapped burns was found to be small (3.5% commission error over Canada), and most burns larger than 10 km2 were accurately detected and mapped (R2 = 0.90, P<0.005, n = 91 for burns in two provinces). Canada‐wide satellite burned area was similar, but consistently smaller by comparison to statistics compiled by the Canadian Interagency Forest Fire Centre (by 17% in 1998, 16% in 1999, and 3% in 2000).  相似文献   

15.
A relationship between the likelihood of wildfires and various drought metrics (soil moisture-based fire potential indices) were examined over the southern part of Mississippi. The following three indices were tested and used to simulate spatial and temporal wildfire probability changes: (1) the accumulated difference between daily precipitation and potential evapotranspiration (P - E); (2) simulated moisture content of the top 10 cm of soil; and (3) the Keetch-Byram Drought Index (KBDI). These indices were estimated from gridded meterological data and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). The relationships between normalized fire potential index deviations and the probability of at least one fire occurring during the following five consecutive days were evaluated using a 23-year (1986-2008) forest fire record for an evenly spaced grid (0.25° x 0.25°) across the state of Mississippi's coastal plain. Two periods were selected and examined (January-mid June and mid September-December). There was good agreement between the observed and logistic model-fitted fire probabilities over the study area during both seasons. The fire potential indices based on the top 10 cm soil moisture and KBDI had the largest impact on wildfire odds, increasing it by almost 2 times in response to each unit change of the corresponding fire potential index during January-mid-June period and by nearly 1.5 times during mid-September-December. These results suggest that soil moisture-based fire potential indices are good indicators of fire occurrence probability across this region.  相似文献   

16.
This paper describes an operational application of AVHRR satellite imagery in combination with the satellite-based land cover database CORINE Land Cover (CLC) for the comprehensive observation and follow-up of 10000 fire outbreaks and of their consequences in Greece during summer 2000. In the first stage, we acquired and processed satellite images on a daily basis with the aim of smoke-plume tracking and fire-core detection at the national level. Imagery was acquired eight times per day and derived from all AVHRR spectral channels. In the second stage, we assessed the consequences of fire on vegetation by producing a burnt-area map on the basis of multi-annual normalised vegetation indices using AVHRR data in combination with CLC. In the third stage we used again CLC to assess the land cover of burnt areas in the entire country. The results compared successfully to available inventories for that year. Burnt area was estimated with an accuracy ranging from 88% to 95%, depending on the predominant land cover type. These results, along with the low cost and high temporal resolution of AVHRR satellite imagery, suggest that the combination of low-resolution satellite data with harmonised CLC data can be applied operationally for forest fire and post-fire assessments at the national and at a pan-European level.  相似文献   

17.
Pixel-based image compositing enables production of large-area surface reflectance images that are largely devoid of clouds, cloud shadows, or haze. Change detection with spectral trend analysis uses a dense time series of images, such as pixel-based composites, to quantify the year, amount, and magnitude of landscape changes. Topographically-related shadows found in mountainous terrain may confound trend-based forest change detection approaches. In this study, we evaluate the impact of topographic correction on trend-based forest change detection outcomes by comparing the amount and location of changes identified on an image composite with and without a topographic correction. Moreover, we evaluated two different approaches to topographic correction that are relevant to pixel-based image composites: the first corrects each pixel according to the day of year (DOY) the pixel was acquired, whilst the second corrects all pixels to a single reference date (August 1st), which was also the target date for generating the pixel-based image composite. Our results indicate that a greater area of change is detected when no topographic correction is applied to the image composite, however, the difference in change area detected between no correction and either the DOY or the August 1st correction is minor and less than 1% (0.54–0.85%). The spatial correspondence of these different approaches is 96.2% for the DOY correction and 97.7% for the August 1st correction. The largest differences between the correction processes occur in valleys (0.71–1.14%), upper slopes (0.71–1.09%), and ridges (0.73–1.09%). While additional tests under different conditions and in other environments are encouraged, our results indicate that topographic correction may not be justified in change detection routines computing spectral trends from pixel-based composites.  相似文献   

18.
Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which represents fire activities and ecological responses at different forest layers. In this study, using field measured fire severity across five forest strata of dominant tree, intermediate-sized tree, shrub, herb, substrate layers, and the aggregated measure of CBI as response variables, we fit statistical models with predictors of Landsat TM bands, Landsat derived NBR or dNBR, image differencing, and image ratioing data. We model multi-strata forest fire in the historical recorded largest wildfire in California, the Big Sur Basin Complex fire. We explore the potential contributions of the post-fire Landsat bands, image differencing, image ratioing to fire severity modeling and compare with the widely used NBR and dNBR. Models using combinations of post-fire Landsat bands perform much better than NBR, dNBR, image differencing, and image ratioing. We predict and map multi-strata forest fire severity across the whole Big Sur fire areas, and find that the overall measure CBI is not optimal to represent multi-strata forest fire severity.  相似文献   

19.
基于叶片光谱的森林叶绿素浓度反演研究   总被引:2,自引:0,他引:2  
准确估测森林叶片叶绿素浓度有助于进一步理解和模拟森林生态系统。基于江西省千烟州试验区主要树种光谱数据和相应叶绿素浓度等化学参量数据,使用高光谱指数和偏最小二乘(PLS)回归方法进行森林叶绿素浓度的反演,对具代表性的几种叶绿素相关的光谱指数进行反演能力评价,构造出表征叶绿素吸收特征的叶绿素吸收面积指数(CAAI),发现TCAR I(改进型的叶绿素吸收比率指数)和CAAI能较好地估测试验区森林主要树种的叶绿素浓度。针对叶片生化参量之间强相关现象,首先使用了叶片生化参量吸收特征分析方法,选定特定波段。然后对叶绿素浓度进行PLS回归估测,并从PLS获得估测模型的结果来评价和解释几种高光谱指数的叶绿素反演能力。  相似文献   

20.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号