首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水-气平衡法被广泛地应用于海水CO2分压(partial pressure,pCO2)的测定。该方法采用水-气平衡器,使海水与平衡器上部顶空中的空气进行CO2交换,达到平衡后测定该顶空空气中CO2的浓度,再换算成海水pCO2。水-气平衡器是海水pCO2测量仪器的关键部件,其性能在很大程度上决定所获得的pCO2数据的准确度和可靠性。本文介绍了水-气平衡器的平衡原理、平衡器时间常数的测量方法及影响因素,归纳了现有的4种用于海水pCO2测量的水-气平衡器即喷淋式、鼓泡式、层流式及混合式平衡器的结构与特点,着重介绍了两种新型的水 气平衡器即基于射流器的鼓泡式平衡器和基于球形降膜的层流式平衡器,比较了不同水-气平衡器的尺寸、运行参数及时间常数,分析了设计和应用水-气平衡器时需考虑的因素。本文可为使用水-气平衡器测定海水pCO2的技术人员提供技术参考。  相似文献   

2.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study.  相似文献   

3.
High resolution measurements of carbon dioxide and oxygen were made in surface waters of the central Arkona Sea (Baltic Sea) from May 2003 to September 2004. Sensors for CO2 partial pressure (pCO2w) and oxygen (O2) concentration were mounted in 7 m depth on a moored platform which is used for hydrographic and meteorological monitoring. The pCO2w data were obtained in half hour intervals and O2 was measured each hour as an average of a 10 min measurement. To check the performance of the sensors, pCO2w and O2 were determined by shipboard measurements on a research vessel which visited the site in 1–2 month intervals. In addition, pCO2w was measured on a “volunteer observing ship” (VOS) passing the platform each second day at a distance of about 25 km. Minima of 220 to 250 μatm of pCO2w were observed at the time of the spring bloom and a cyanobacteria bloom in mid-summer. During winter the pCO2w was mostly close to equilibrium with the atmosphere but maxima of 430 to 530 μatm were also observed. The seasonality of oxygen and pCO2w showed an opposing pattern. From a multiple regression analysis, we concluded that two processes primarily controlled pCO2w during our study: biological turnover and mixing. A parameterization, based on apparent oxygen utilisation (AOU) and salinity (S) only (pCO2w = 1.23 AOU + 43 S), reproduced the seasonality of pCO2w in surface water reasonably well. Based on our pCO2, salinity, and temperature data set, we attempted to separate processes changing total inorganic carbon concentrations (CT) by using an alkalinity–salinity relation for the area. The contribution of CO2 gas exchange and mixing were calculated and from this the biological turnover was deduced to reveal the calculated CT changes.The net annual uptake of CO2 in the central Arkona Sea was estimated to be about 1.5 Tg (1.5·1012 g) which was approximately balanced by a net oxygen release considering the uncertainties of the flux calculations. Near-coast CO2 emission due to episodic upwelling partly compensated the uptake of the central part of the Arkona Sea reducing the overall magnitude of the CO2 uptake.  相似文献   

4.
《Marine Chemistry》2005,93(2-4):131-147
Data on the distribution of dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) were obtained during a cruise in the North Sea during late summer 2001. A 1° by 1° grid of 97 stations was sampled for DIC while the pCO2 was measured continuously between the stations. The surface distributions of these two parameters show a clear boundary located around 54°N. South of this boundary the DIC and pCO2 range from 2070 to 2130 μmol kg−1 and 290 to 490 ppm, respectively, whereas in the northern North Sea, values range between 1970 and 2070 μmol kg−1 and 190 to 350 ppm, respectively. The vertical profiles measured in the two different areas show that the mixing regime of the water column is the major factor determining the surface distributions. The entirely mixed water column of the southern North Sea is heterotrophic, whereas the surface layer of the stratified water column in the northern North Sea is autotrophic. The application of different formulations for the calculation of the CO2 air–sea fluxes shows that the southern North Sea acts as a source of CO2 for the atmosphere within a range of +0.8 to +1.7 mmol m−2 day−1, whereas the northern North Sea absorbs CO2 within a range of −2.4 to −3.8 mmol m−2 day−1 in late summer. The North Sea as a whole acts as a sink of atmospheric CO2 of −1.5 to −2.2 mmol m−2 day−1 during late summer. Compared to the Baltic and the East China Seas at the same period of the year, the North Sea acts a weak sink of atmospheric CO2. The anticlockwise circulation and the short residence time of the water in the North Sea lead to a rapid transport of the atmospheric CO2 to the deeper layer of the North Atlantic Ocean. Thus, in late summer, the North Sea exports 2.2×1012 g C month−1 to the North Atlantic Ocean via the Norwegian trench, and, at the same period, absorbs from the atmosphere a quantity of CO2 (0.4 1012 g C month−1) equal to 15% of that export, which makes the North Sea a continental shelf pump of CO2.  相似文献   

5.
南海东北部春季海表pCO_2分布及海-气CO_2通量   总被引:1,自引:1,他引:0  
2013年南海东北部春季共享航次采用走航观测方式,现场测定了表层海水和大气的二氧化碳分压(pCO2)及相应参数。结合水文、化学等同步观测要素资料,对该海域pCO2的分布变化进行了探讨。结果表明,陆架区受珠江冲淡水、沿岸上升流及生物活动的影响,呈现CO2的强汇特征;吕宋海峡附近及吕宋岛西北附近海域受海表高温、黑潮分支"西伸"、吕宋岛西北海域上升流等因素影响,呈现强源特征。根据Wanninkhof的通量模式,春季整个南海东北部海域共向大气释放约4.25×104 t碳。  相似文献   

6.
白令海BR断面海-气CO2通量及其参数特征   总被引:1,自引:0,他引:1  
通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明,将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量...  相似文献   

7.
Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.  相似文献   

8.
《Marine Chemistry》2005,93(1):21-32
We investigated distributions of surface water CO2 partial pressure (pCO2), dissolved oxygen (DO) and associated carbonate parameters in the Pearl River estuary, a large subtropical estuary under increasingly anthropogenic pressure in China, in the summer of 2000 and late spring of 2001. pCO2 levels, measured underway using a continuous measurement system, were high during both seasons, with levels of >4000 μatm at salinity <0.5. pCO2 distribution overall mirrored DO across the salinity gradient. Using the linear relationship between excess CO2 and apparent oxygen utilization (AOU) in surface water, we conclude that aerobic respiration is the most important process in maintaining such high pCO2 measured upstream. The material being respired is likely in a close association with the organic pollutants discharged into the system. Based on the measured excess CO2 vs. AOU plots, we estimate that the upper limit of pCO2 should be ∼7000 μatm in the Pearl River estuary assuming that CO2 was produced solely by aerobic respiration.  相似文献   

9.
The TCO2, O2, TA and δ13C data of the 1969 Geosecs Intercalibration Cruise was analyzed and found to be consistent with a vertical mixing model which assumes that each point along a vertical profile is a mixture of the upper and lower boundaries. Calculated regression coefficients are in agreement with the model of Redfield et al. (1963) and with the assumption that TA variation is due to carbonate reaction. Oxygen consumption and TCO2 production decrease exponentially with depth and approximately 80% of ΔCO2 can be accounted for, on average, by O2 consumption. The remaining 20% are probably due to carbonate solution which seems to take place at depths below 2,500 m. The present study suggests that the isotopic composition (δ13C) of the carbon source, required to account for most of the oxygen consumed, may be heavier than the value of −23%. assigned to dissolved organic carbon and particulate organic carbon.  相似文献   

10.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

11.
The densities (p) of artificial solutions of Dead Sea waters have been measured at 20°, 25°, 30°, 35° and 40°C using a vibrating tube densimeter. The resulting relative densities (ppo, where po is the density of water) have been used to determine an equation of state for Dead Sea waters. The average deviation between experimental values and those calculated from the obtained equation was 0.000020 g ml?1. A thermal expansion coefficient and the coefficients characterizing the influence of the changes in salt or ionic concentrations on the density of Dead Sea waters were calculated, and they were shown to be temperature and concentration dependent. The densities of Dead Sea waters were found to be very sensitive to any changes in ionic composition. The partial molal volumes of salt components were calculated and discussed.  相似文献   

12.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

13.
The ‘International Intercomparison Exercise of fCO2 Systems’ was carried out in 1996 during the R/V Meteor Cruise 36/1 from Bermuda/UK to Gran Canaria/Spain. Nine groups from six countries (Australia, Denmark, France, Germany, Japan, USA) participated in this exercise, bringing together 15 participants with seven underway fugacity of carbon dioxide (fCO2) systems, one discrete fCO2 system, and two underway pH systems, as well as systems for discrete measurement of total alkalinity and total dissolved inorganic carbon. Here, we compare surface seawater fCO2 measured synchronously by all participating instruments. A common infrastructure (seawater and calibration gas supply), different quality checks (performance of calibration procedures for CO2, temperature measurements) and a common procedure for calculation of final fCO2 were provided to reduce the largest possible amount of controllable sources of error. The results show that under such conditions underway measurements of the fCO2 in surface seawater and overlying air can be made to a high degree of agreement (±1 μatm) with a variety of possible equilibrator and system designs. Also, discrete fCO2 measurements can be made in good agreement (±3 μatm) with underway fCO2 data sets. However, even well-designed systems, which are operated without any obvious sign of malfunction, can show significant differences of the order of 10 μatm. Based on our results, no “best choice” for the type of the equilibrator nor specifics on its dimensions and flow rates of seawater and air can be made in regard to the achievable accuracy of the fCO2 system. Measurements of equilibrator temperature do not seem to be made with the required accuracy resulting in significant errors in fCO2 results. Calculation of fCO2 from high-quality total dissolved inorganic carbon (CT) and total alkalinity (AT) measurements does not yield results comparable in accuracy and precision to fCO2 measurements.  相似文献   

14.
An experimental method for the continuous determination of the partial pressure of carbon dioxide was attempted during a cruise in the Mediterranean Sea. The method, which uses infrared analysis of air continuously equilibrated with pumped seawater, is described. Calculations to obtain pCO2 in seawater from measured pCO2 are given with an example of the results.  相似文献   

15.
In this work, we examined the carbonate parameters, i.e. total alkalinity (TA), pH, and partial pressure of CO2 (pCO2), and the air–sea CO2 flux (FCO2) in the continental shelves of the southern Yellow Sea (SYS) and East China Sea (ECS), based on two field surveys conducted in April and August of 2011. Surface pCO2 showed significant spatial variations, ranging from 246 to 686 µatm in spring (average ± standard deviation = 379 ± 95 µatm) and from 178 to 680 µatm in summer (384 ± 114 µatm). During the spring cruise, the central SYS (pCO2 < 240 µatm) and the Changjiang estuary (pCO2 < 300 µatm) were under-saturated with CO2, while the southern SYS and the southwestern ECS were supersaturated (pCO2 = 420–680 µatm). In summer, however, the CO2-supersaturated waters (pCO2 = 380–680 µatm) occupied a relatively wide area, including the nearshore of the SYS and the Changjiang estuary, whereas pCO2-deficient water (pCO2 = 220–380 µatm) was observed only at the offshore ECS. In general, the entire SYS and ECS area behaved as a sustained CO2 sink, with average FCO2 of ?3.9 and ?2.1 mmol m?2 d?1 in spring and summer, respectively. Phytoplankton production was the driving force for CO2 absorption, especially during the spring cruise. In addition, we found that typical water mixing processes and decomposition of terrestrial material were responsible for the release of CO2 in three turbidity maximum regions.  相似文献   

16.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

17.
The seasonal and interannual variability of the air–sea CO2 flux (F) in the Atlantic sector of the Barents Sea have been investigated. Data for seawater fugacity of CO2 (fCO2sw) acquired during five cruises in the region were used to identify and validate an empirical procedure to compute fCO2sw from phosphate (PO4), seawater temperature (T), and salinity (S). This procedure was then applied to time series data of T, S, and PO4 collected in the Barents Sea Opening during the period 1990–1999, and the resulting fCO2sw estimates were combined with data for the atmospheric mole fraction of CO2, sea level pressure, and wind speed to evaluate F.The results show that the Atlantic sector of the Barents Sea is an annual sink of atmospheric CO2. The monthly mean uptake increases nearly monotonically from 0.101 mol C m− 2 in midwinter to 0.656 mol C m− 2 in midfall before it gradually decreases to the winter value. Interannual variability in the monthly mean flux was evaluated for the winter, summer, and fall seasons and was found to be ± 0.071 mol C m− 2 month− 1. The variability is controlled mainly through combined variation of fCO2sw and wind speed. The annual mean uptake of atmospheric CO2 in the region was estimated to 4.27 ± 0.68 mol C m− 2.  相似文献   

18.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

19.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

20.
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m~2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m~2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号