首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
A 4.96-m-long sediment core from the Hanon paleo-maar in Jeju Island, Korea was studied to investigate the paleoclimatic change and East Asian monsoon variations during the latest Pleistocene to early Holocene (23,000-9000 cal yr BP). High-resolution TOC content, magnetic susceptibility, and major element composition data indicate that Jeju Island experienced the coldest climate around 18,000 cal yr BP, which corresponds to the last glacial maximum (LGM). Further, these multi-proxy data show an abrupt shift in climatic regime from cold and arid to warm and humid conditions at around 14,000 cal yr BP, which represents the commencement of the last major deglaciation. After the last major deglaciation, the TOC content decreased from 13,300 to 12,000 cal yr BP and from 11,500 to 9800 cal yr BP, thereby reflecting the weakening of the summer monsoon. The LGM in Jeju Island occurred later in comparison with the Chinese Loess Plateau. Such a disparity in climatic change events between central China and Jeju Island appears to be caused by the asynchrony between the coldest temperature event and the minimum precipitation event in central China and by the buffering effect of the Pacific Ocean.  相似文献   

2.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

3.
Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.  相似文献   

4.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

5.
We present a late glacial pollen record (17,700 to 8500 cal yr BP) from a Lake Naleng sediment core. Lake Naleng is located on the southeastern Tibetan Plateau (31.10°N 99.75°E, 4200 m) along the upper tree-line. Variations in the summer monsoon are evident from shifts in vegetation that correspond to late glacial climate trends from other monsoon-sensitive regions. Alpine steppe was recorded between 17,700 and 14,800 cal yr BP, indicating low effective moisture at the study site. Expansion of alpine meadows followed by advances in the position of tree-line around Lake Naleng suggest that climate became warmer and wetter between ∼ 14,800 and 12,500 cal yr BP, probably representing an enhancement of the Asian monsoon. Climatic cooling and reduced effective moisture are inferred from multivariate analysis and the upward retreat of tree-line between ∼ 12,500 and 11,700 cal yr BP. The timing and nature of these shifts to warm, wet and then cold, dry climatic conditions suggest that they correspond to the Bølling/Allerød and Younger Dryas intervals. Abies-Betula forests, representing warm and moist conditions, spread during the early Holocene.  相似文献   

6.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

7.
In arid regions, because of spatial variability, using single climate records is difficult to reconstruct the past climate change for the drainage basins. Holocene environmental records were collected from the upper, middle and lower regions of the Shiyang River drainage basin in the marginal area of the Asian monsoon (northwest China). The main objective of this paper was to compare the records from the terminal lake and the middle and upper reaches of the basin to study the basin-wide environmental changes. During the early Holocene the vegetation was sparse, and the effective moisture was relatively low in the basin. The Holocene Climatic Optimum started between 7.0 and 8.0 cal ka BP, during which the lake level reached the highest level in the terminal lake; the vegetation density and the effective moisture reached the highest level during the Holocene in the drainage basin. From 4.7 cal ka BP the terminal lake began to shrink, while the vegetation density decreased dramatically. In the middle and upper regions of the drainage, the effective moisture began to decrease since 3.5 cal ka BP, and the arid tendency was earlier in the terminal lake than it was in the middle and upper regions of the drainage basin. During the early Holocene the relatively arid environment was affected by the gradually intensifying East Asian monsoon and the dry westerly winds. The mid-Holocene Optimum benefited from the intensive East Asian monsoon and the humid westerly winds. Then, the East Asian monsoon retreated since the late-Holocene. In the basin the arid tendency may be related to the retracting of the East Asian monsoon. However, the intensifying acidification after 1.5 cal ka BP may be correlated to the increasing dryness of the westerly winds.  相似文献   

8.
Palynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00?N, 0°23′52?W) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial-interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.  相似文献   

9.
Millennial-scale climatic variations have punctuated the Holocene characterised by abrupt changes from warm to cool or wetter to drier conditions. Amongst these climatic events, there is increased evidence for an abrupt multicentennial shift of climatic conditions around 3.8/3.7 kyr BP (4.1 cal. kyr BP) in mid- to low-latitude regions which had a profound impact on landscape and population migration. In the Mediterranean region, subtropical, tropical and equatorial Africa, a number of continental proxies (lake-levels, pollen sequences, stable isotopes) record this abrupt change towards drier conditions. However, regionalism in climatic conditions is reflected in the vegetation records, possibly in relation to orographic conditions and the influence of sea-surface conditions. Hitherto there have been very few marine sequences that record this particular climatic shift at high-resolution. We present here new data from the Congo deep-sea fan containing integrated marine and terrestrial proxies. Around 5–4 cal. kyr BP, shifts in surface conditions off the Congo River mouth are observed, with possible establishment of seasonal coastal upwelling, and lower sea-surface temperatures. In parallel, pollen data indicate fluctuations of herbaceous, afromontane taxa and charred grass cuticles, suggesting more open vegetation in the lowland regions and an increase in cloud forest and/or afromontane vegetation at higher altitudes within the Congolese region.  相似文献   

10.
Rapid climate change at millennial and centennial scales is one of the most important aspects in paleoclimate study. It has been found that rapid climate change at millennial and centennial scales is a global phenomenon during both the glacial age and the Holocene with amplitudes typical of geological or astronomical time-scales. Simulations of glacial and Holocene climate changes have demonstrated the response of the climate system to the changes of earth orbital parameter and the importance of variations in feedbacks of ocean, vegetation, icecap and greenhouse gases. Modeling experiments suggest that the Atlantic thermohaline circulation was sensitive to the freshwater input into the North Atlantic and was closely related to the rapid climate changes during the last glacial age and the Holocene. Adopting the Earth-system models of intermediate complexity (EMICs), CLIMBER-2, the response of East Asian climate change to Dansgaard/Oeschger and Heinrich events during the typical last glacial period (60 ka B.P.-20 ka B.P.) and impacts of ice on the Tibetan plateau on Holocene climate change were stimulated, studied and revealed. Further progress of paleoclimate modeling depends on developing finer-grid models and reconstructing more reliable boundary conditions. More attention should be paid on the study of mechanisms of abrupt climatic changes as well as regional climate changes in the background of global climate change. __________ Translated from Advances in Earth Science, 2007, 22(10): 1054–1065 [译自: 地球科学进展]  相似文献   

11.
Much of Baffin Island is close to the modern glaciation limit and climatic changes within the last decade are already being reflected in snow cover extent. Statistical analysis of glacierized and ice-free corries indicates that changes in direct solar radiation due to astronomical factors are inadequate to account for glacierization of those at present ice-free. These and other sources of evidence demonstrate the need for augmented winter snowfall in order to increase the extent of glacierization. The pattern of glacial history in this area is for maximum ice extent during the early glacial phase (>68,000, <137,000 BP), folfxlowed by a reduction in ice volume during the cold pleniglacial (>24,000, < 68,000 BP) and then a limited late glacial advance (the Cockburn Stade, ca. 8,000 BP) due to increased precipitation. The Barnes Ice Cap did not disappear in the Holocene as it did in the last interglacial. The area is highly suitable for long-term monitoring of climatic change and glacial response.  相似文献   

12.
对郧县—白河段汉江Ⅰ级河流阶地上风成黄土的沉积学、理化性质、地球化学和年代学进行了系统研究。结果表明,汉江Ⅰ河流阶的形成不晚于25 ka BP;黄土具有马兰黄土(L1)→过渡黄土(Lt)→古土壤(S0)→全新世黄土(L0)→表土(TS)的地层序列,与渭河谷地的黄土地层序列完全可比;25~11.5 ka BP,冬季风强盛,气候冷干,从11.5 ka BP开始,冬季风逐渐减弱,气候开始向暖湿方向逐步转化,从8.5 ka BP开始,夏季风达到了末次冰期结束后的鼎盛时期,3.1 ka BP前后,东亚季风格局发生变化,夏季风减弱,重新进入一个相对干冷的时期,而人类活动对地表的影响形成了表土;汉江上游谷地黄土记录的末次冰期后季风逐渐加强、中全新世季风强盛、随后季风衰退和气候变干的夏季风演变模式与渭河谷地黄土的记录高度一致,与邻区石笋和泥炭记录的季风变化趋势也有良好的可比性,但与石笋/泥炭记录的夏季风强盛期的起始时间(9.3~4.2 ka BP)并不完全一致。  相似文献   

13.
Late Pleistocene and Holocene vegetational and climatic change have been studied palynologically at a site at 1750 m elevation in the subandean vegetation belt near Popayán, in the southern Colombian Andes. Time control on the pollen record is based on six AMS 14C ages, ranging from possibly Middle Pleniglacial time (around 50000 yr BP) to 1092 ± 44 yr BP. Because of the presence of two hiatuses only the Middle Pleniglacial and Late Holocene periods (the last 2300 yr BP) are represented. Pollen data indicate the presence of closed subandean forest during glacial time. Changes in the contribution of pollen originating from the uppermost and lowermost subandean forest belts, changes in the contribution of a number of other subandean forest taxa, and changes in species composition between the three pollen zones, suggest that the climate during the Middle Pleniglacial was markedly colder, and perhaps also wetter, than during the Late Holocene. Pollen assemblages from the Late Holocene indicate that the landscape has been affected by deforestation and agriculture since at least 2300 yr BP, but that human impact decreased in the last 780 yr BP. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Widespread empirical evidence suggests that extraterrestrial forcing influences the Earth’s climate, but how this could occur remains unclear. Here we describe a new approach to this problem that unifies orbital, solar and lunar forcing based on their common control of the Earth’s latitudinal insolation gradient (LIG). The LIG influences the climate system through differential solar heating between the tropics and the poles that gives rise to the latitudinal temperature gradient (LTG), which drives the Earth’s atmospheric and (wind driven) ocean circulation. We use spectral analysis of recent changes in the Earth’s LTG to support earlier work on orbital timescales (Davis and Brewer, 2009) that suggests the climate system may be unusually sensitive to changes in the LIG. Identification of LIG forcing of the LTG is possible because the LIG varies according to seasonally specific periodicities based on obliquity in summer (41 kyr orbital and 18.6 yr lunar cycle), and precession (21 kyr orbital cycle) and total solar irradiance (11 yr solar cycle) in winter. We analyse changes in the Northern Hemisphere LTG over the last 120 years and find significant (99%) peaks in spectral frequencies corresponding to 11 years in winter and 18.6 years in summer, consistent with LIG forcing. The cross-seasonal and multi-frequency nature of the LIG signal, and the diffuse effect of the LTG driver on the climate system may account for the complexity of the response to extraterrestrial forcing as seen throughout the climatic record. This hypersensitivity of the LTG to the LIG appears poorly reproduced in climate models, but would be consistent with the controversial theory that the LTG is finely balanced to maximise entropy.  相似文献   

15.
研究目的】在末次冰期,全球气候变化以千年尺度的快速、大幅度温度波动旋回为特征,这种波动变化在两极冰芯、深海沉积、中国黄土和洞穴石笋等诸多地质样品中均有记录。黑海位于北大西洋与东亚季风区过渡带,具有极有代表性的沉积记录。本文旨在通过对黑海沉积序列的研究,建立起其区域环境变化与北大西洋及东亚季风气候域气候变化的联系。【研究方法】研究对取自黑海西北部罗马尼亚陆坡区多瑙河峡谷北侧GAS-CS12钻孔的长22.0 m的岩芯样品,进行了粒度、矿物成分、主量元素、有机碳、总氮及碳氮同位素等分析。【研究结果】揭示出该段岩芯沉积于末次冰期中后期“Neoeuxine”湖相阶段,可划分为5个沉积单元,对应于北大西洋H4、H3、H1气候变化事件、末次冰盛期(LGM)及Bolling-Allerod气候变暖事件。【结论】建立起了其沉积序列及区域环境变化与北大西洋及东亚季风气候域气候变化的联系,印证了末次冰期千年尺度的气候变化事件在北大西洋、东亚季风区及两者过渡带上具有高度的一致性。创新点:建立了黑海西北沉积序列与区域环境变化的关系;补充了北大西洋与东亚季风区两者过渡带上气候波动事件的可靠时标。  相似文献   

16.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

17.
An abrupt climatic change during the MIS 5a/4 transition is evident in the loess records of China (S1/L1). Proxies including geochemical elements, grain size, soil color, magnetic susceptibility and carbonate (CaCO3) content indicate a warming interval, which lasted approximately 3 ka, during the MIS 5a/4 transition in both the Wangguan and Shagou loess sections, located in Sanmenxia (Henan Province) and Wuwei (Gansu Province), respectively. Both the winter and summer monsoon proxies demonstrate that this warming interval occurred at the same time in both sections (nearly 70.5–73.6 ka BP), with maximum warming from 71.4 to 72.0 ka BP. This study suggests a universal abrupt warming interval in the East Asia monsoon region at this time. Comparisons with marine, terrestrial and ice-core records indicate this event was very likely an abrupt global warming interval during the last glacial–interglacial transition.  相似文献   

18.
We present atmospheric simulations of three different time slices of the late Quaternary using the ECHAM 3 general circulation model in T42 resolution. In this work we describe the results of model runs for the time slices 6000 years BP (last climate optimum), 21 000 BP (last glacial maximum) and 115 000 years BP (glacial inception). Although the solar insolation is known for all time slices, a complete data set of the other boundary conditions which are necessary for running the atmospheric model exists only for the last glacial maximum in the form of the CLIMAP reconstruction. For the other two time slices, which are interglacial states like the modern climate, sea surface temperatures, land albedo and ice sheet topography are kept at modern values and only the solar insolation is changed appropriately. The response of the model to solar insolation changes is quite reasonable. The modelled anomalies are small and roughly opposite in sign for 6000 BP and 115 000 BP, respectively. In the case of last glacial maximum, the glacial ice sheet topography and ice albedo produce a much larger climate anomaly in the model. However, to enable a real test of model performance under glacial boundary conditions, the CLIMAP sea surface temperatures, which are now known to be partly inaccurate, should be replaced by an updated “state-of-the-art” reconstruction.  相似文献   

19.
Zhong, W., Cao, J., Xue, J., Ouyang, J., Wang, H., Tang, X. & Gao, X. 2012 (January): Carbon isotope evidence of last glacial climate variations in the tropical NW Leizhou Peninsula, South China. Boreas, Vol. 41, pp. 102–112. 10.1111/j.1502‐3885.2011.00224.x. ISSN 0300‐9483. Bulk organic δ13C values of sediment sequences are commonly used to indicate past climatic changes, although the causes and mechanisms leading to the observed organic carbon isotope responses are presently not fully understood. Based on two sedimentary sequences, namely a peat profile and a fluvial and swamp sequence from the tropical NW Leizhou Peninsula in South China, we interpret more negative bulk organic δ13C values to suggest wetter and warmer conditions, implying a stronger East Asian (EA) summer monsoon, and less negative δ13C values to indicate drier and cooler conditions, reflecting a weakening of the EA summer monsoon. A warm and wet period occurred between c. 48.0 and 28.0 cal. ka BP. In the study region, a climate shift occurred at c. 22.0 (or 20.0) cal. ka BP, and the driest and coldest period occurred between c. 19.0 and 16.0 cal. ka BP. After c. 12.0 cal. ka BP, the climate changed towards wetter and warmer conditions. Several possible millennial‐scale dry and cold oscillations characterized possibly by C4 plants, or by more positive organic δ13C values during the period when C3 plants dominated, are cautiously and tentatively interpreted as showing a similarity with Heinrich events and other cold millennial‐scale oscillations evidenced from a Greenland ice core and Chinese stalagmite. We demonstrate that bulk organic δ13C records of sedimentary sequences in the study region have potential for indicating the changes in vegetation composition that were closely associated with climate variation during the last glacial period.  相似文献   

20.
《Quaternary Science Reviews》2005,24(12-13):1391-1411
Temporal and spatial changes in glacier cover throughout the Late Quaternary in Tibet and the bordering mountains are poorly defined because of the inaccessibility and vastness of the region, and the lack of numerical dating. To help reconstruct the timing and extent of glaciation throughout Tibet and the bordering mountains, we use geomorphic mapping and 10Be cosmogenic radionuclide (CRN) surface dating in study areas in southeastern (Gonga Shan), southern (Karola Pass) and central (Western Nyainqentanggulha Shan and Tanggula Shan) Tibet, and we compare these with recently determined numerical chronologies in other parts of the plateau and its borderlands. Each of the study regions receives its precipitation mainly during the south Asian summer monsoon when it falls as snow at high altitudes. Gonga Shan receives the most precipitation (>2000 mm a−1) while, near the margins of monsoon influence, the Karola Pass receives moderate amounts of precipitation (500–600 mm a−1) and, in the interior of the plateau, little precipitation falls on the western Nyainqentanggulha Shan (∼300 mm a−1) and the Tanggula Shan (400–700 mm a−1). The higher precipitation values for the Tanggula Shan are due to strong orographic effects. In each region, at least three sets of moraines and associated landforms are preserved, providing evidence for multiple glaciations. The 10Be CRN surface exposure dating shows that the formation of moraines in Gonga Shan occurred during the early–mid Holocene, Neoglacial and Little Ice Age, on the Karola Pass during the Lateglacial, Early Holocene and Neoglacial, in the Nyainqentanggulha Shan date during the early part of the last glacial cycle, global Last Glacial Maximum and Lateglacial, and on the Tanggula Shan during the penultimate glacial cycle and the early part of the last glacial cycle. The oldest moraine succession in each of these regions varies from the early Holocene (Gonga Shan), Lateglacial (Karola Pass), early Last Glacial (western Nyainqentanggulha Shan), and penultimate glacial cycle (Tanggula Shan). We believe that the regional patterns and timing of glaciation reflect temporal and spatial variability in the south Asian monsoon and, in particular, in regional precipitation gradients. In zones of greater aridity, the extent of glaciation has become increasingly restricted throughout the Late Quaternary leading to the preservation of old (≫100 ka) glacial landforms. In contrast, in regions that are very strongly influenced by the monsoon (≫1600 mm a−1), the preservation potential of pre-Lateglacial moraine successions is generally extremely poor. This is possibly because Lateglacial and Holocene glacial advances may have been more extensive than early glaciations and hence may have destroyed any landform or sedimentary evidence of earlier glaciations. Furthermore, the intense denudation, mainly by fluvial and mass movement processes, which characterize these wetter environments, results in rapid erosion and re-sedimentation of glacial and associated landforms, which also contributes to their poor preservation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号