首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics (ROC) curve, spatially agreed area approach and seed cell area index (SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.  相似文献   

2.
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.  相似文献   

3.
A comprehensive landslide inventory and susceptibility maps are prerequisite for developing and implementing landslide mitigation strategies. Landslide susceptibility maps for the landslides prone regions in northern Pakistan are rarely available. The Hunza-Nagar valley in northern Pakistan is known for its frequent and devastating landslides. In this paper, we have developed a landslide inventory map for Hunza-Nagar valley by using the visual interpretation of the SPOT-5 satellite imagery and mapped a total of 172 landslides. The landslide inventory was subsequently divided into modelling and validation data sets. For the development of landslide susceptibility map seven discrete landslide causative factors were correlated with the landslide inventory map using weight of evidence and frequency ratio statistical models. Four different models of conditional independence were used for the selection of landslide causative factors. The produced landslides susceptibility maps were validated by the success rate and area under curves criteria. The prediction power of the models was also validated with the prediction rate curve. The validation results shows that the success rate curves of the weight of evidence and the frequency models are 82% and 79%, respectively. The prediction accuracy results obtained from this study are 84% for weight of evidence model and 80% for the frequency ratio model. Finally, the landslide susceptibility index maps were classified into five different varying susceptibility zones. The validation and prediction result indicates that the weight of evidence and frequency ratio model are reliable to produce an accurate landslide susceptibility map, which may be helpful for landslides management strategies.  相似文献   

4.
The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas.The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geoenvironmental conditions to find out the reliability.Both the 2008 Wenchuan Earthquake and the 2013 Lushan Earthquake occurred in the Longmen Mountain seismic zone,with similar topographical and geological conditions.The two earthquakes are both featured by thrust fault and similar seismic mechanism.This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake.Six influencing parameters were taken into consideration: distance from the seismic fault,slope gradient,lithology,distance from drainage,elevation and Peak Ground Acceleration(PGA).The preliminary results suggested that the zones with high susceptibility of coseismic landslides were mainly distributed in the mountainous areas of Lushan,Baoxing and Tianquan counties.The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work.The predictive power of the susceptibility map was validated by ROC curve analysis method using 2037 co-seismic landslides in the epicenter area.The AUC value of 0.710 indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy in predicting the landslides triggered by Lushan earthquake.  相似文献   

5.
Landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an area.An attempt is made to map the landslide susceptibility in Tevankarai Ar subwatershed,Kodaikkanal,India using binary logistic regression analysis.Geographic Information System is used to prepare the database of the predictor variables and landslide inventory map,which is used to build the spatial model of landslide susceptibility.The model describes the relationship between the dependent variable(presence and absence of landslide) and the independent variables selected for study(predictor variables) by the best fitting function.A forward stepwise logistic regression model using maximum likelihood estimation is used in the regression analysis.An inventory of 84 landslides and cells within a buffer distance of 10m around the landslide is used as the dependent variable.Relief,slope,aspect,plan curvature,profile curvature,land use,soil,topographic wetness index,proximity to roads and proximity to lineaments are taken as independent variables.The constant and the coefficient of the predictor variable retained by the regression model are used to calculate the probability of slope failure and analyze the effect of each predictor variable on landslide occurrence in thestudy area.The model shows that the most significant parameter contributing to landslides is slope.The other significant parameters are profile curvature,soil,road,wetness index and relief.The predictive logistic regression model is validated using temporal validation data-set of known landslide locations and shows an accuracy of 85.29 %.  相似文献   

6.
GIS based spatial data analysis for landslide susceptibility mapping   总被引:5,自引:4,他引:1  
Landslide susceptibility map delineates the potential zones for landslides occurrence. The paper presents a statistical approach through spatial data analysis in GIS for landslide susceptibility mapping in parts of Sikkim Himalaya. Six important causative factors for landslide occurrences were selected and corresponding thematic data layers were prepared in GIS. Topographic maps,satellite image,field data and published maps constitute the input data for thematic layer preparation. Numerical weights for different categories of these factors were determined based on a statistical approach and the weighted thematic layers were integrated in GIS environment to generate the landslide susceptibility map of the area. The landslide susceptibility map classifies the area into five different landslide susceptible zones i.e.,very high,high,moderate,low and very low. This map was validated using the existing landslide distribution in the area.  相似文献   

7.
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups, (i) training dataset and (ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages, distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.  相似文献   

8.
Wudu County in northwestern China frequently experiences large-scale landslide events.High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region.The aim of this research is to compare and combine landslide susceptibility assessments of rainfalltriggered and earthquake-triggered landslide events in the study area using Geographical Information System(GIS) and a logistic regression model.Two separate susceptibility maps were produced using inventories reflecting single landslide-triggering events,i.e.,earthquakes and heavy rain storms.Two groups of landslides were utilized: one group containing all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake.Subsequently,the individual maps were combined to illustrate the locations of maximum landslide probability.The use of the resulting three landslide susceptibility maps for landslide forecasting,spatial planning and for developing emergency response actions are discussed.The combined susceptibility map illustrates the total landslide susceptibility in the study area.  相似文献   

9.
A new approach combining the certainty factor (CF) and analytic hierarchy process (AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China. Landslide inventory data were collected based on field investigations and remote sensing interpretations. A total of 791 landslides were identified. A total of 633 landslides were randomly selected from this data set as the training set, and the remaining landslides were used for validation as the test set. Nine factors, including the slope angle, slope aspect, slope curvature, lithology, distance to faults, distance to streams, precipitation, road network intensity degree and land use were chosen as the landslide causal factors for further susceptibility assessment. The weight of each factor and its subclass were calculated by AHP and CF methods. Landslide susceptibility was compared between the bivariate statistical method and the proposed CF-AHP method. The results indicate that the distance to streams, distance to faults and lithology are the most dominant causal factors associated with landslides. The susceptibility zonation was categorized into five classes of landslide susceptibility, i.e., very high, high, moderate, low and very low level. Lastly, the relative operating characteristics (ROC) curve was used to validate the accuracy of the new approach, and the result showed a satisfactory prediction rate of 78.3%, compared to 69.2% obtained with the landslide susceptibility index method. The results indicate that the CF-AHP combined method is more appropriate for assessing the landslide susceptibility in this area.  相似文献   

10.
基于信息量模型和数据标准化的滑坡易发性评价   总被引:1,自引:0,他引:1  
本文以北川曲山-擂鼓片区为研究区,将坡度、坡向、高程、地层、距断层的距离、距水系的距离和距道路的距离作为该区域滑坡易发性评价因子。采用信息量模型计算了各项评价因子的信息量值,并运用4种标准化模型对信息量值进行标准化处理。各评价因子的权重由层次分析法(AHP)确定。在GIS中将权重值和各评价因子的标准化信息量值,进行叠加计算得到区域滑坡总信息量值,并基于自然断点法对其进行重分类,将研究区划分为极高易发区、高易发区、中易发区、低易发区和极低易发区5级易发区。将基于4种标准化模型和信息量模型得到的滑坡易发性评价结果进行了对比分析,结果表明:基于最值标准化信息量模型的滑坡易发性评价结果的ROC曲线下面积AUC值为0.807,高于其余模型的AUC值,说明最值标准化信息量模型的滑坡易发性评价效果最好。极高易发区面积占研究区面积的20.03%,离断层和水系较近,主要分布地层为寒武系、志留系和三迭系。研究结果可为区内滑坡风险评价和灾害防治提供参考。  相似文献   

11.
Newmark位移模型是研究地震滑坡易发性的经典模型,机器学习方法支持向量机模型也越来越多的应用到滑坡易发性评估研究。本文将Newmark位移模型与支持向量机模型相结合,建立基于物理机理的地震滑坡易发性评估模型并应用于2008年汶川地震重灾区汶川县。从震后遥感影像目视解译出汶川县1900处地震诱发滑坡,并将其随机划分为70%的训练数据集和30%的验证数据集。选择地形起伏度、坡度、地形曲率、与构造断裂带距离、与水系距离、与道路距离6个因子与Newmark位移值共同作为地震滑坡易发性影响因素。利用ROC曲线和模型不确定性等指标对模型结果进行评估,并与二元统计模型频率比和多元统计模型Logistic回归的结果进行对比。结果表明:与频率比和Logistic回归模型相比,支持向量机模型的正确率最高,训练集和验证集ROC曲线下的面积分别为0.876和0.851。将模型应用于绘制汶川县地震滑坡易发性图,结果显示滑坡易发性图与实际的滑坡点位分布一致性较高,有80.4%的滑坡位于极高和高易发区。这说明支持向量机与Newmark位移方法结合建立的地震滑坡易发性评估模型有较高的预测价值,可以为滑坡风险评估和管理提供依据。  相似文献   

12.
A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone areas in China, the Youfang catchment of Longnan mountain region,which lies in the transitional area among QinghaiTibet Plateau, loess Plateau and Sichuan Basin, was selected as a representative case to evaluate the frequency and distribution of landslides.Statistical relationships for landslide susceptibility assessment were developed using landslide and landslide causative factor databases.Logistic regression(LR)was used to create the landslide susceptibility maps based on a series of available data sources: landslide inventory; distance to drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index, and land use.The quality of the landslide susceptibility map produced in this paper was validated and the result can be used fordesigning protective and mitigation measures against landslide hazards.The landslide susceptibility map is expected to provide a fundamental tool for landslide hazards assessment and risk management in the Youfang catchment.  相似文献   

13.
Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.  相似文献   

14.
Nepal was hit by a 7.8 magnitude earthquake on 25th April, 2015. The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal. We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork, using bivariate statistical model with different landslide causative factors. From the investigation, it is observed that most of the coseismic landslides are independent of previous landslides. Out of 3,716 mapped landslides, we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model. A total of 11 different landslide-influencing parameters were considered. These include slope gradient, slope aspect, plan curvature, elevation, relative relief, Peak Ground Acceleration (PGA), distance from epicenters of the mainshock and major aftershocks, lithology, distance of the landslide from the fault, fold, and drainage line. The success rate of 87.66% and the prediction rate of 86.87% indicate that the model is in good agreement between the developed susceptibility map and the existing landslides data. PGA, lithology, slope angle and elevation have played a major role in triggering the coseismic mass movements. This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.  相似文献   

15.
本文以山西省霍西煤矿区为研究区,利用遥感和GIS方法对滑坡灾害的敏感性进行了数值建模与定量评价。利用交叉检验方法构建了径向基核函数支持向量机滑坡敏感性评价模型,并基于拟合精度对模型进行了定量评价;对各评价因子在模型中的重要性进行对比分析;基于空间分辨率为30m的评价因子,通过径向基核函数支持向量机模型获得了霍西煤矿区滑坡敏感性指数值,并利用分位数法将霍西煤矿区的滑坡敏感性分为极高、高、中和低4个等级。结果表明:拟合精度建模阶段和验证阶段分别为87.22%和70.12%;与滑坡敏感性关系最密切的5个评价因子依次是岩性、距道路距离、坡向、高程和土地利用类型;极高和高敏感区域分布了93.49%的滑坡点,面积占总面积的50.99%,是比较合理的分级方案。本研究不仅可以为研究区人工边坡调查和煤矿资源合理开采提供借鉴,对相似矿区的相关工作也具有参考价值。  相似文献   

16.
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.  相似文献   

17.
Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarpment where landslide problem is frequent due to steep slope, complex geology, rift tectonics, heavy rainfall and seismicity. In order to tackle this problem, preparing a landslide susceptibility map is very important. For this, GISbased frequency ratio(FR) and logistic regression(LR) models have been applied using landslide inventory and the nine landslide factors(i.e. lithology, land use, distance from river fault, slope, aspect, elevation, curvature and annual rainfall). Database construction, weighting each factor classes or factors, preparing susceptibility map and validation were the major steps to be undertaken. Both models require a rasterized landslide inventory and landslide factor maps. The former was classified into training and validation landslides. Using FR model, weights for each factor classes were calculated and assigned so that all the weighted factor maps can be added to produce a landslide susceptibility map. In the case of LR model, the entire study area is firstly divided into landslide and non-landslide areas using the training landslides. Then, these areas are changed into landslide and non-landslide points so as to extract the FR maps of the nine landslide factors. Then a linear relationship is established between training landslides and landslide factors in SPSS. Based on this relationship, the final landslide susceptibility map is prepared using LR equation. The success-rate and prediction-rate of FR model were 74.8% and 73.5%, while in case of LR model these were 75.7% and 74.5% respectively. A close similarity in the prediction and validation rates showed that the model is acceptable. Accuracy of LR model is slightly better in predicting the landslide susceptibility of the area compared to FR model.  相似文献   

18.
Landslide hazard zonation mapping at regional level of a large area provides a broad trend of landslide potential zones. A macro level landslide hazard zonation for a small area may provide a better insight into the landslide hazards. The main objective of the present work was to carry out macro landslide hazard zonation mapping on 1:50,000 scale in an area where regional level zonation mapping was conducted earlier. In the previous work the regional landslide hazard zonation maps of Srinagar- Rudraprayag area of Garhwal Himalaya in the state of Uttarakhand were prepared using subjective and objective approaches. In the present work the landslide hazard zonation mapping at macro level was carried out in a small area using a Landslide Hazard Evaluation Factor rating scheme. The hazard zonation map produced by using this technique classifies the area into relative hazard classes in which the high hazard zones well correspond with high frequency of landslides. The results of this map when compared with the regional zonation maps prepared earlier show that application of the present technique identified more details of the hazard zones, which are broadly shown in the earlier zonation maps.  相似文献   

19.
China-Pakistan Economic Corridor(CPEC)is a framework of regional connectivity,which will not only benefit China and Pakistan but will have positive impact on Iran,Afghanistan,India,Central Asian Republic,and the region.The surrounding area in CPEC is prone to frequent disruption by geological hazards mainly landslides in northern Pakistan.Comprehensive landslide inventory and susceptibility assessment are rarely available to utilize for landslide mitigation strategies.This study aims to utilize the high-resolution satellite images to develop a comprehensive landslide inventory and subsequently develop landslide susceptibility maps using multiple techniques.The very high-resolution(VHR)satellite images are utilized to develop a landslide inventory using the visual image classification techniques,historic records and field observations.A total of 1632 landslides are mapped in the area.Four statistical models i.e.,frequency ratio,artificial neural network,weights of evidence and logistic regression were used for landslide susceptibility modeling by comparing the landslide inventory with the topographic parameters,geological features,drainage and road network.The developed landslides susceptibility maps were verified using the area under curve(AUC)method.The prediction power of the model was assessed by the prediction rate curve.The success rate curves show 93%,92.8%,92.7%and 87.4%accuracy of susceptibility maps for frequency ratio,artificial neural network,weights of evidence and logistic regression,respectively.The developed landslide inventory and susceptibility maps can be used for land use planning and landslide mitigation strategies.  相似文献   

20.
The Longchi area with the city of Dujiangyan, in the Sichuan province of China, is composed of Permian stone and diorites and Triassic sandstones and mudstones intercalated with slates. An abundance of loose co-seismic materials were present on the slopes after the May 12, 2008 Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. A total of 48 debris flows, all triggered by heavy rainfall on 13th August 20l0, are described in this paper. Field investigation, supported by remote sensing image interpretation, was conducted to interpret the co-seismic landslides in the debris flow gullies. Specific characteristics of the study area such as slope, aspect, elevation, channel gradient, lithology, and gully density were selected for the evaluation of debris flow susceptibility. A score was given to all the debris flow gullies based on the probability of debris flow occurrence for the selected factors. In order to get the contribution of the different factors, principal component analyses were applied. A comprehensive score was obtained for the 48 debris flow gullies which enabled us to make a susceptibility map for debris flows with three classes. Twenty-two gullies have a high susceptibility, twenty gullies show a moderate susceptibility and six gullies have a low susceptibility for debris flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号