首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
针对表面活性剂强化的重非水相流体(DNAPLs)污染的含水层修复问题,在建立多相流数值模拟模型的基础上,应用拉丁超立方采样(LHS)方法,在多相流模拟模型可控输入变量的可行域内采样,有效提高了采样效率和覆盖程度。根据采集的样品数据集,运用多元回归分析方法建立多相流模拟模型的替代模型--双响应面模型,为DNAPLs污染含水层修复过程的优化设计的耦合技术探索新的理论和方法。经检验,替代模型计算结果的相对误差均小于10%,精度较高,说明其在功能上充分逼近模拟模型。运用替代模型实现模拟模型与优化模型的连接,可以大幅度减少优化模型计算过程中直接多次反复调用模拟模型所引起的庞大计算负荷。  相似文献   

2.
卢文喜  罗建男  辛欣  陈社明 《地球科学》2012,37(5):1075-1081
根据含水层中水、表面活性剂和DNAPLs的运移规律和相互作用机理, 建立三维多相流数值模拟模型, 用以模拟表面活性剂强化的DNAPLs污染含水层的修复过程.将所建立的模型应用于一个被PCE污染的非均质含水层中, 并分别对污染物的污染过程以及修复过程进行模拟.研究结果表明: 数值模拟模型给出了表面活性剂强化含水层修复过程中非水相流体迁移转化的数学描述, 能够在短时间内、参数有限的条件下真实地刻画DNAPLs在含水层中的运移规律, 并能有效地模拟表面活性剂的修复过程.此外, 模拟结果显示, 由于表面活性剂对PCE的增溶增流作用, 有效地提高了PCE在水中的溶解性和迁移性, 其修复40 d的去除率达到63.5%, 与抽出处理法(去除率为31.8%)相比修复效果明显增强.   相似文献   

3.
太阳辐射在生态过程模拟中是重要的驱动数据。尤其是在大区域模拟时,由于太阳辐射观测站点数有限,逐日高分辨率的太阳辐射空间数据很难直接获取。本研究根据太阳辐射传输过程,建立了太阳辐射传输模型,计算太阳直射辐射、散射辐射以及总辐射。利用ANUSPLIN软件插值得到的各气象要素数据,作为太阳辐射传输模型的输入变量,通过四川省周边13个站点的辐射观测值以及日照时数建立辐射校正参数,最终建立四川省500m×500m逐日的太阳辐射空间数据集。结果表明,13个辐射站点的晴空太阳辐射预测值,年均为8594MJ,略高于实测的多年最大值8062MJ;并利用13个辐射站点的数据,建立实测辐射与晴空辐射的比值同日照百分率的线性关系(R~2=0.76,参数a和b分别为0.262和0.756),对晴空太阳辐射进行校正,得到13个站点太阳辐射年均模拟值为5023MJ,实测值为5030MJ,二者呈显著线性相关(R~2为0.79,p0.05),平均绝对误差(MAPE)为23.3%;通过该模型模拟的四川省太阳辐射通量为210~524W/m~2(白天平均);从空间格局上看,四川盆地和边缘区较低(300W/m~2),西部高原区最高。结合空间化的日照时数等气象数据,本研究为碳循环的区域模拟提供了一套精度较高的太阳辐射数据,并为全球变化研究中所需太阳辐射数据的获取提供方法参考。  相似文献   

4.
土壤湿度遥感估算同化研究综述   总被引:5,自引:0,他引:5  
土壤湿度是影响气候的至关重要的变量之一。利用数据同化方法反演大规模高精度土壤湿度数据是目前土壤水分研究的一个重要方向。结合国内外土壤湿度遥感估算研究现状,总结了土壤水分同化算法主要应用进程,梳理了目前实现土壤水分反演且应用广泛的陆面过程模型,Noah模型、通用陆面过程模型CLM、简单生物圈模型Si B2、北方生产力模拟模型BEPS,介绍了大范围卫星土壤水分数据集,包括陆面同化系统数据集、ASCAT数据集、AMSR-E数据集及SMOS数据集,最后探讨了遥感土壤水分同化过程中存在的问题及发展方向。  相似文献   

5.
以塔克拉玛干沙漠南缘的绿洲为例,通过建立数值模拟模型,选取渗透系数、给水度、水力传导系数进行了参数的局部灵敏度分析和全局灵敏度分析。分析结果表明,地下水数值模型的结果对含水层渗透系数K最敏感,给水度S次之,对水力传导系数的敏感度C最小;此外,与局部灵敏度分析方法相比,全局灵敏度分析考虑了参数之间的相互作用对模型输出结果的影响,使分析结果更合理。  相似文献   

6.
基于贝叶斯模型平均的径流模拟及不确定性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
水文模型是模拟水循环过程重要手段,依靠单个模型进行模拟往往存在很大的不确定性,使通过多模型进行组合模拟成为必然趋势。选取3个集总式水文模型应用贝叶斯模型平均(BMA)进行流域月径流量的多模型模拟,采用期望最大化算法推求BMA分布参数以得到BMA均值模拟序列和90%不确定性区间。以武烈河实测数据为例进行分析,结果表明:BMA方法既能通过均值模拟提供更高精度的模拟效果,还可通过不确定性置信区间定量评价模型结构不确定性,为径流模拟提供丰富信息。  相似文献   

7.
基于随机森林方法的岩石节理粗糙度系数研究   总被引:1,自引:0,他引:1  
岩石节理粗糙度系数(JRC)是研究岩石力学的重要参数之一。为精确有效地描述JRC,提出了一种基于随机森林(Random forest,RF)算法研究JRC的新方法。首先,详细叙述了RF算法的原理和实现流程;然后,简要分析了影响JRC的一些统计参数,确定了7个重要的基本变量,即节理表面最大峰高Sp、表面最大高度Sz、表面最大谷深Sv、峰度系数Sku、偏斜度系数Ssk、均方根高度Sq、算数平均高度Sa;最后,结合R语言构建了一种RF回归预测分形维数D和JRC值的模型,其中用于训练和测试RF回归模型的样本资料源于某高校的实测数据。用6组实测数据对训练后的RF回归模型进行了测试,试验结果表明:(1)利用RF回归模型预计的D值、JRC值与实测值的最大相对误差仅为3.844%、4.553%。(2)RF回归模型具有较强的泛化能力,需要考虑的模型参数少,预测精度高,为今后继续研究D值和JRC值提供了一种新思路。  相似文献   

8.
入湖冰川受冰湖作用影响,物质损失速率高于其他类型冰川,并导致冰湖进一步扩张,冰湖溃决风险增加。建立入湖冰川物质变化序列,对揭示不同类型冰川对气候变化的响应特征,以及评估冰湖溃决风险研究具有重要意义。基于中国地面气象要素驱动数据集和实测气象数据,采用冰川表面能量-物质平衡模型估算了冰川表面物质变化,并结合冰川流动和末端退缩特征,重建了1989-2018年龙巴萨巴冰川物质变化序列。结果表明,近30a龙巴萨巴冰川总物质损失为0.315km^(3)w.e.,平均物质变化速率为-0.114km^(3)w.e.·a^(-1)。冰川平均表面物质平衡为-0.26m w.e.·a^(-1),表面消融是冰川物质亏损的主要贡献因素。气温变化对冰川表面物质损失的影响高于降水;冰川表面物质平衡对夏季气温和降水变化的敏感性强于其他季节;表碛覆盖加速了冰川表面消融,且较薄的表碛厚度会加剧冰川表面物质损失。  相似文献   

9.
基于Budyko假设,考虑土壤水蓄变量因子,改进流域水热耦合平衡方程,验证了Budyko假设在松花江流域的适应性,分析了松花江流域实际蒸散发(ET_a)的时空变化特征及其驱动机制。主要结论如下:(1)以1995~2006年作为模型参数率定期,2007~2012年作为模型检验期,用P-ΔS代表陆面蒸散发的水分供应条件,结果表明,增加土壤水蓄变量因子,提高了模型对实际蒸散发的模拟精度。(2)在α=0.1的显著性水平下,1995~2012年各汇水区ET_a均没有趋势性变化;ET_a在空间上由西向东逐渐增加,存在明显的地带性。(3)降水对ET_a的贡献量空间变化与潜在蒸散发、降水、土壤水蓄变量对ET_a总贡献量空间变化一致,表明松花江流域的水分条件是影响实际蒸散发的主导因素。  相似文献   

10.
气象数据是水文过程研究的关键要素,再分析数据的发展为资料缺乏地区的径流模拟提供了新的解决方案。为研究ERA5-Land再分析数据集在径流模拟中的适用性,本文以玛纳斯河流域肯斯瓦特水文站以上流域为研究区,选取多个评价指标对ERA5-Land降水和温度进行准确性评价,并采用经验模态分解(EOF)分析其在研究区内的分布特点。在准确性方面,ERA5-Land与实测数据具有较好相关性,降水探测率为0.96,能反映大多数的降水事件,但与实测数据相比总体偏高21.81%,气温准确性好于降水,总体拟合效果较好,最优范围为-520 ℃,在极值部分不确定性有所增加。EOF决定性模态表明研究区内降水、气温变化趋势基本一致,即易受大尺度天气系统影响。利用该数据集驱动SWAT模型在月、日尺度上对玛纳斯河流域进行径流模拟,在验证期纳什系数(NSE)分别为0.88和0.82,具有较好的模拟效果。ERA5-Land再分析数据集可为西北缺乏实测气象资料地区径流模拟提供参考。  相似文献   

11.
One of the environmental concerns in recent decades is the prevalence of different pollutants in soil. Hence, the importance of remediation has led to the development of various methods to remediate polluted soil. Among these methods, soil washing has gained significant attention to treat polluted soils. In this paper, the response surface methodology was applied in order to determine the optimal conditions for total petroleum hydrocarbon remediation using nonionic surfactant Brij35 in soil environment. The effect of different factors in soil washing process including surfactant solution concentration and volume, washing time, age of pollution and frequency of washing are evaluated. The predicted values for total petroleum hydrocarbon remediation efficiency by the response functions are in a very close agreement with experimental data (R-2= 98.75 %). The second order model was developed as experimented response and optimal conditions were obtained by analyzing the contour and surface plots and also by solving the regression equation using LINGO 9.0 software. The optimal concentrations (8 g/L), volume of surfactant solution (500 mL), washing time (75 min), age of pollution (29 days) and frequency of washing (three times) are determined. In this optimal condition, the removal efficiency has been observed to be 93.54 % which conforms to the results of process optimization using response surface methodology. Based on the results, it can be concluded that the response surface methodology is a suitable approach to determine the optimal conditions of soil washing to remediate organic hydrophobic pollutants using the nonionic surfactant Brij35 from the soil.  相似文献   

12.
One of the most cost-effective in situ technologies for soil and groundwater (i.e., aquifer) remediation is electrokinetic remediation. In electrokinetic remediation, electromigration due to electric field is combined with hydromigration due to hydraulic flow by purge water to remove pollutants from aquifers through the pore water. This study aims at investigating theoretically the role of electromigration (as active movement) of pollutants and the role of hydromigration (as passive movement) of pollutants in electrokinetic remediation, and making it clear that the control variables for electrokinetic remediation are the applied voltage and the hydraulic flow rate. These aims are pursued by construction of a mathematical model based on physico-chemical considerations and by model simulations of the electrokinetic remediation applied to the virtual aquifer polluted by heavy metals of copper sulfate. According to numerical simulations with the model: (1) heavy metal (nonanionic copper) is removed from the upstream anode region and accumulated in the downstream cathode region; (2) to carry away the heavy metal outside the aquifer (global removal), hydromigration by purge water flow is essential; and (3) electromigration contributes mainly to the redistribution of heavy metals within the aquifer (local removal and local accumulation).  相似文献   

13.
Surrogate modelling is an effective tool for reducing computational burden of simulation optimization. In this article, polynomial regression (PR), radial basis function artificial neural network (RBFANN), and kriging methods were compared for building surrogate models of a multiphase flow simulation model in a simplified nitrobenzene contaminated aquifer remediation problem. In the model accuracy analysis process, a 10-fold cross validation method was adopted to evaluate the approximation accuracy of the three surrogate models. The results demonstrated that: RBFANN surrogate model and kriging surrogate model had acceptable approximation accuracy, and further that kriging model’s approximation accuracy was slightly higher than RBFANN model. However, the PR model demonstrated unacceptably poor approximation accuracy. Therefore, the RBFANN and kriging surrogates were selected and used in the optimization process to identify the most cost-effective remediation strategy at a nitrobenzene-contaminated site. The optimal remediation costs obtained with the two surrogate-based optimization models were similar, and had similar computational burden. These two surrogate-based optimization models are efficient tools for optimal groundwater remediation strategy identification.  相似文献   

14.
Comprehensive information about the spatial distribution of the subsurface hydraulic properties is crucial to model groundwater flow, to predict solute transport in aquifers and to design remediation actions. In this work, a Bayesian Geostatistical approach, as implemented in bgaPEST, was adopted to estimate the hydraulic properties of a well field located at the Campus of Science and Technology of the University of Parma (Northern Italy), in a contest of a highly parameterized inversion. Head data, collected by means of multi frequency oscillatory pumping tests, were used to both estimate the hydraulic parameters and validate the results. The groundwater flow processes were modelled by means of MODFLOW 2005 and an adjoint-state formulation of the same software was used to efficiently calculate the sensitivity matrix, required by the inverse procedure. The Bayesian Geostatistical approach estimated the hydraulic conductivity and specific storage fields, handling a large number of parameters. The results of the inversion are consistent with the alluvial nature of the investigated aquifer and the preliminary traditional pumping tests carried out at the site.  相似文献   

15.
In this paper, the hydraulic characteristics of the fracture-karst aquifer and the distribution patterns of petrochemical contaminants are studied. Then, a numerical model using the mixed Eulerian-Lagrangian approach is constructed to predict the distribution and transport of petrochemical compounds in groundwater. The results of numerical modelling and sensitivity analysis show that it may be a workable way for aquifer remediation to combine contamination sources control and capture zone establishment.  相似文献   

16.
Submarine groundwater discharges (SGD) are an important source of freshwater to coastal bays and estuaries in arid and semi-arid regions. Understanding groundwater flows to these ecologically sensitive bodies is important for coastal environmental sustainability. A management-oriented mathematical model capable of simulating the flow of groundwater into a coastal bay (i.e., submarine groundwater discharge) is developed here using the principles of quasi-steady-state flow and the existence of a sharp interface between the freshwater and the saltwater portions of the aquifer. The model is applied to the Baffin Bay in South Texas, a hypersaline coastal body with no major river discharges. Two global sensitivity approaches (the one-at-a time design; OAT) and the grid-based Monte Carlo sensitivity index are used to identify critical model inputs. The sensitivity of the model inputs to the Nash–Sutcliffe Efficiency (NSE) criterion is calculated making use of synoptic observed SGD measurements made over a period of one tidal cycle. The results of the study indicate that global sensitivity analysis methods are particularly sensitive to the number of model realizations. The ability of these techniques to screen out insensitive model inputs increased with increasing number of realizations. The variability in the identified inputs was more prominent with the OAT sensitivity methods than Monte Carlo-based techniques. In general, the aquifer properties (hydraulic conductivity and aquifer thickness) as well as fluid properties (seawater and fresh water densities) along with the antecedent SGD was noted to be the most sensitive parameters. This result indicates that the implementation of sharp-front coastal–aquifer models can be improved through better hydrogeologic characterization and measuring temperature and salinity data to improve density estimation. The global sensitivity methods also help identify reasonable values for model inputs which can serve as a starting point for advanced calibrations. The results, however, indicated that the model is likely over-parameterized with different input sets yielding similar NSE estimates. Based on these initial parameter estimates, the model was able to capture the general trend in the observed SGD but could not capture the dynamic associated with high water levels in the bay. Pre-calibration global sensitivity analysis is recommended in similar applications as it not only provides insights into future data collection efforts but can also help assess the likely success of model calibration. However, given the variability among the techniques, it is suggested that multiple global sensitivity methods be utilized.  相似文献   

17.
Three aquifer systems as deep, middle, and shallow were identified in the Kazan trona ore deposit area. The flow conditions and the interaction between various layers were conceptualized into a site hydrogeological model. Each aquifer system was hydraulically and chemically characterized and represented in a numerical groundwater model. The resulting model has been calibrated under steady-state and transient conditions using available data. The flow model was used in conjunction with a three-dimensional solute transport model to assess the impacts of the pilot well solution mining of the trona deposit on groundwater resources during operation and post-operation periods. The results of operation period indicate that, even under the worse conditions (50 times increase in vertical hydraulic conductivity due to subsidence), ion contribution from the mine area with 118,000 mg/l maximum concentration would be about 58 mg/l into the deep aquifer system. This contribution is about 1.45% of the existing concentration (4,000 mg/l) in the deep aquifer. After 1,000 years of post-operation period, ion contribution from the mine area with maximum 119,000 mg/l concentration would be about 205 mg/l into the deep aquifer under extremely worse conditions. This contribution is about 5–20% of present concentrations in the deep aquifer. Retardation factors, which were not considered during model simulations would decrease the predicted concentrations. It is concluded that pilot well solution mining of the trona deposit would not have significant impact on the quality of groundwater resources in the overlying aquifers.  相似文献   

18.
Analysis of tidal effects on aquifer systems plays an important role in coastal aquifer management owing to various hydrological, engineering and environmental problems in coastal areas. Using the real-world data of unconfined and confined aquifers, a data-driven approach is presented in this study for the analysis of tide–aquifer interaction in coastal aquifers. Six analytical tide–aquifer interaction models were selected which take into account the effects of vertical beach, sloping beach, tidal loading, aquifer leakage, outlet capping, and combined leakage and outlet capping on tide-induced groundwater fluctuations. The tide–aquifer interaction datasets were obtained from the Konan groundwater basin (unconfined aquifer) of Japan and the Dridrate groundwater basin (confined aquifer) of Morocco. The analysis of the results obtained by the sloping beach model revealed that for a given beach slope, the amplitude of groundwater level increases with an increase in aquifer diffusivity and a decrease in aquifer thickness. However, no significant effect of beach slope was observed in this study at unconfined sites for all the datasets. The influence of tidal loading was found to be considerably less for all the three confined sites. Further, the analysis of the results of the leakage model indicated that with an increase in leakage into the aquifer, the amplitude of groundwater level as well as the phase shift (time lag) decreases. Of all the confined and unconfined datasets, only two confined sites were found to be affected by outlet capping. Overall, it is concluded that the coastal beach bordering the Konan basin is not significantly sloping, the contribution of tidal loading to tide-induced groundwater fluctuations in the Dridrate aquifer is not appreciable, and that the aquifer leakage and outlet capping do not exist at the unconfined sites under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号