首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Faults can act as flow barriers or conduits to groundwater flow by introducing heterogeneity in permeability. We examine the hydrogeology of the Sandwich Fault Zone, a 137 km long zone of high-angle faults in northern Illinois, using a large-scale historic aquifer test. The fault zone is poorly understood at depth due to the majority of the faults being buried by glacial deposits and its near-vertical orientation which limits geologic sampling across faults. The aquifer test—perhaps one of the largest in terms of overall withdrawal in North American history—was conducted in 1942 at a facility adjacent to the fault zone. More than 34,000 m3/day was pumped for 37 days from nine multiaquifer wells open to the stratified Cambrian-Ordovician sandstone aquifer system. We modeled the aquifer test using a transient MODFLOW-USG model and simulated pumping wells with the CLN package. We tested numerous fault core/damage zone conceptualizations and calibrated to drawdown values recorded at production and observation wells. Our analysis indicates that the fault zone is a low-permeability feature that inhibits lateral movement of groundwater and that there is at least an order of magnitude decrease in horizontal hydraulic conductivity in the fault core compared to the undeformed sandstone. Large head declines have occurred north of the fault zone (over 300 m since predevelopment conditions) and modifying fault zone parameters significantly affects calibration to regional drawdown on a decadal scale. The flow-barrier behavior of the fault zone has important implications for future groundwater availability in this highly stressed region.  相似文献   

2.
The design and construction of a waste rock pile influences water infiltration and may promote the production of contaminated mine drainage. The objective of this project is to evaluate the use of an active fiber optic distributed temperature sensing (aFO-DTS) protocol to measure infiltration and soil moisture within a flow control layer capping an experimental waste rock pile. Five hundred meters of fiber optic cable were installed in a waste rock pile that is 70 m long, 10 m wide, and was covered with 0.60 m of fine compacted sand and 0.25 m of non-reactive crushed waste rock. Volumetric water content was assessed by heating the fiber optic cable with 15-min heat pulses at 15 W/m every 30 min. To test the aFO-DTS system 14 mm of recharge was applied to the top surface of the waste rock pile over 4 h, simulating a major rain event. The average volumetric water content in the FCL increased from 0.10 to 0.24 over the duration of the test. The volumetric water content measured with aFO-DTS in the FCL and waste rock was within ±0.06 and ±0.03, respectively, compared with values measured using 96 dielectric soil moisture probes over the same time period. Additional results illustrate how water can be confined within the FCL and monitored through an aFO-DTS protocol serving as a practical means to measure soil moisture at an industrial capacity.  相似文献   

3.
4.
An abandoned creosote facility in Conroe, Texas, has become a field site for the National Center for Ground Water Research (NCGWR) at Rice University. Ground-water contamination in the shallow aquifer beneath the site was characterized by sampling soils and water quality at 14 monitoring wells and 35 boreholes. Results from six sampling trips over two years for inorganic and organic chemical concentrations in the ground water show wells around the site were contaminated to levels above 800 μg/l for naphthalene, 400 μg/1 for methyl naphthalene, and 150 μg/1 for dibenzofuran. Conservative constituents, traced by chloride concentrations up to 75 mg/l, have migrated 300 ft (90 m) downgradient of the site. Organic contaminants have been adsorbed and microbially degraded in their migration from the waste source as evidenced by their attenuated concentrations. Detailed field pump tests have been performed to evaluate hydraulic conductivity at several of the shallow wells. The U.S. Geological Survey (USGS) Solute Transport Model (Konikow and Bredehoeft, 1978) has been used to predict chloride plume patterns and evaluate parameters which govern transport processes at the Conroe waste site.  相似文献   

5.
6.
Hydrogeology: a short history, part 2   总被引:1,自引:0,他引:1  
Fetter CW 《Ground water》2004,42(6-7):949-953
  相似文献   

7.
Hydrogeology of Clay Till in a Prairie Region of Canada   总被引:1,自引:0,他引:1  
M. J. Hendry 《Ground water》1988,26(5):607-614
  相似文献   

8.
9.
10.
11.
2008年5月12日在四川省汶川地区发生了8级特大地震,断裂长度达300km,地震中最大错位10m以上,造成震区地面建筑大面积倒塌和大量人员伤亡,并诱发了严重的地质灾害,毁坏了公路、桥梁等交通系统和通讯设施。由于地震的发生和破坏程度与地壳内部断裂构造的形态和分布之间有着密切的关系,因此,尽快确定龙门山断裂带目前的状况。探明各分支断层的位置和几何形态,  相似文献   

12.
13.
Several decades of faulty exploitation of salt through solution mining led to the creation of an underground cavern containing several million cubic meters of brine. To eliminate the huge hazard near a densely inhabited area, a technical solution was implemented to resolve this instability concern through the controlled collapse of the roof while pumping the brine out and filling the cavern with sterile. To supervise this, an area of over 1 km2 was monitored with a staggered array of 36 one-component, 15 Hz geophones installed in 12 boreholes about 160–360 m deep. A total of 2,392 seismic events with M w ?2.6 to 0.2 occurred from July 2005 to March 2006, located within an average accuracy of 18 m. The b-value of the frequency-magnitude distribution exhibited a time variation from 0.5 to 1 and from there to 1.5, suggesting that the collapse initiated as a linear fracture pattern, followed by shear planar fragmentations and finally a 3-D failure process. The brunching ratio of seismicity is indicative of a super-critical process, except for a short period in mid-February when temporary stability existed. Event relocation through the use of a collapsing technique outlines that major clusters of seismicity were associated with the main cavern collapse, whereas smaller clusters were generated by the fracturing of smaller size nearby caverns. It is shown that one-component recordings allow for stable and reliable point source event mechanism solutions through automatic moment tensor inversion using time domain estimates of low frequency amplitudes with first polarities attached. Detailed analysis of failure mechanism components uses 912 solutions with conditional number CN < 100 and a correlation coefficient r 2 > 0.5. The largest pure shear (DC) components characterize the events surrounding the cavern ceiling, which exhibit normal and strike-slip failures. The majority of mechanism solutions include up to 30% explosional failure components, which correspond to roof caving under gravitational collapsing. The largest vertical deformation rate relates closely to the cavern roof and floor, as well as the rest of the salt formation, whereas the horizontal deformation rate is most prominent in areas of detected collapses.  相似文献   

14.
--A 2-D finite-element-method (FEM) numerical experiment of earthquake cycles at a subduction zone is performed to investigate the effect of viscoelasticity of the earth on great interplate earthquake fault slip. We construct a 2-D viscoelastic FEM model of northeast Japan, which consists of an elastic upper crust and a viscoelastic mantle wedge under gravitation overlying the subducting elastic Pacific plate. Instead of the dislocation model prescribing an amount of slip on a plate interface, we define an earthquake cycle, in which the plate interface down to a depth is locked during an interseismic period and unlocked during coseismic and postseismic periods by changing the friction on the boundary with the master-slave method. This earthquake cycle with steady plate subduction is periodically repeated to calculate the resultant earthquake fault slip.¶As simulated in a previous study (Wang, 1995), the amount of fault slip at the first earthquake cycle is smaller than the total relative plate motion. This small amount of fault slip in the viscoelastic medium was considered to be one factor explaining the small seismic coupling observed at several subduction zones. Our simulation, however, shows that the fault slip grows with an increasing number of repeated earthquake cycles and reaches an amount comparable to the total relative plate motion after more than ten earthquake cycles. This new finding indicates that the viscoelasticity of the earth is not the main factor in explaining the observed small seismic coupling. In comparison with a simple one-degree-of-freedom experiment, we demonstrate that the increase of the fault slip occurs in the transient state from the relaxed initial state to the stressed equilibrium state due to the intermittent plate loading in a viscoelastic medium.  相似文献   

15.
16.
17.
18.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

19.
Spontaneous bilateral mode II shear ruptures were nucleated on faults in photoelastic Homalite plates loaded in uniaxial compression. Rupture velocities were measured and the interaction between the rupture front and short fault branches was observed using high-speed digital photography. Fault branches were formed by machining slits of varying lengths that intersected the fault plane over a range of angles. These branches were frictionless because they did not close under static loading prior to shear rupture nucleation. Three types of behavior were observed. First, the velocity of both rupture fronts was unaffected when the fault branches were oriented 45° to the main slip surface and the length of the branches were less than or equal to ~0.75 R0* (where R0* is the slip-weakening distance in the limit of low rupture speed and an infinitely long slip-pulse). Second, rupture propagation stopped at the branch on the compressive side of the rupture tip but was unaffected by the branch on the tensile side when the branches were ~1.5 R0* in length and remained oriented 45° to the principle slip surface. Third, branches on the tensile side of the rupture tip nucleated tensile ``wing tip' extensions when the branches were oriented at 70° to the interface. Third, when the branches were oriented at 70° to the interface, branches on the tensile side of the rupture tip nucleated tensile ``wing-crack' extensions. We explain these observations using a model in which the initial uniaxial load produces stress concentrations at the tips of the branches, which perturb the initial stress field on the rupture plane. These stress perturbations affect both the resolved shear stress driving the rupture and the fault-normal stress that controls the fault strength, and together they explain the observed changes in rupture speed.  相似文献   

20.
地基处理好坏是建筑物是否牢固的前提,当前,国内地基处理的方式多种多样,不同的地基处理方式所涵盖的技术含量不尽相同,施工工艺不尽相同,应用领域不尽相同,用高频液压振动锤施工H型钢桩作为中小学校建筑、或其他建筑物的承载桩,可有效防止地震对建筑物地基的影响和对建筑物的破坏,从而能有效地减少人民生命财产损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号