首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Fourier pseudospectral method has been widely accepted for seismic forward modelling because of its high accuracy compared to other numerical techniques. Conventionally, the modelling is performed on Cartesian grids. This means that curved interfaces are represented in a ‘staircase fashion‘causing spurious diffractions. It is the aim of this work to eliminate these non-physical diffractions by using curved grids that generally follow the interfaces. A further advantage of using curved grids is that the local grid density can be adjusted according to the velocity of the individual layers, i.e. the overall grid density is not restricted by the lowest velocity in the subsurface. This means that considerable savings in computer storage can be obtained and thus larger computational models can be handled. One of the major problems in using the curved grid approach has been the generation of a suitable grid that fits all the interfaces. However, as a new approach, we adopt techniques originally developed for computational fluid dynamics (CFD) applications. This allows us to put the curved grid technique into a general framework, enabling the grid to follow all interfaces. In principle, a separate grid is generated for each geological layer, patching the grid lines across the interfaces to obtain a globally continuous grid (the so-called multiblock strategy). The curved grid is taken to constitute a generalised curvilinear coordinate system, where each grid line corresponds to a constant value of one of the curvilinear coordinates. That means that the forward modelling equations have to be written in curvilinear coordinates, resulting in additional terms in the equations. However, the subsurface geometry is much simpler in the curvilinear space. The advantages of the curved grid technique are demonstrated for the 2D acoustic wave equation. This includes a verification of the method against an analytic reference solution for wedge diffraction and a comparison with the pseudospectral method on Cartesian grids. The results demonstrate that high accuracies are obtained with few grid points and without extra computational costs as compared with Cartesian methods.  相似文献   

2.
结晶岩地区深地震数据采集关键技术与方法   总被引:1,自引:1,他引:0       下载免费PDF全文
深反射地震是了解深部地质结构的主要手段,获取高品质的数据是给出合理地质解释的基础.在结晶岩地区,由于地层成层性差、非均质性严重,地震散射效应明显,导致地震波场复杂,同时结晶岩为非理想弹性体,不利于地震波能量转换,有效反射能量弱,信噪比低.加之深反射地震的目标层较深且受环境噪声干扰严重,高频信号衰减快,地震资料主频较低.这些因素使得在结晶岩区难以获得高品质的地震资料,为探索提高该类地区深反射地震资料质量的方法和技术,本文依托长江中下游成矿带2009—2014年深反射地震数据采集工作,在精细设计、严格施工的基础上,从激发和接收入手,开展了"轴向不耦合激发"、"宽频接收"和"宽线观测"等技术方法试验研究.结果表明,这些方法技术措施提高了下传弹性波能量,展宽了接收地震信号的频带,提高了覆盖次数和信噪比,有效改善了地震原始资料的品质和成像效果.研究结果对今后结晶岩地区深地震反射数据采集工作具有重要的实用价值和参考意义.  相似文献   

3.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   

4.
Seismic facies analysis makes use of different seismic parameters in order to get other than structural information. A review is given of possibilities and usefulness of seismic facies analysis in oil exploration. A seismic facies unit can be defined as a sedimentary unit which is different from adjacent units in its seismic characteristics. Parameters that should be taken into consideration in the seismic facies analysis are as follows: reflection amplitude, dominant reflection frequency, reflection polarity, interval velocity, reflection continuity, reflection configuration, abundance of reflections, geometry of seismic facies unit, and relationship with other units. Interpretation of seismic facies data may be either direct or indirect. The purpose of the direct interpretation is to find out geological causes responsible for the seismic signature of a seismic facies unit. So, the direct interpretation may be aimed at predicting lithology, fluid content, porosity, relative age, overpressured shales, type of stratification, geometry of the geological body corresponding to the seismic facies unit and its geological setting. The indirect interpretation is intended to reach some conclusions on depositional processes and environments, sediment transport direction, and some aspects of geological evolution (transgression, regression, subsidence, uplift, erosion). The results of the seismic facies analysis may be shown on seismic facies cross-sections and seismic facies maps. Depending on the available seismic data and geological conditions in the area under consideration, the seismic facies maps may be of different types such as general seismic facies maps showing distribution of different seismic facies units, sand-shale ratio maps, direction of cross-bedding and paleo-transport maps etc. Several kinds of seismic facies units and their geological interpretation are discussed as examples of seismic facies analysis.  相似文献   

5.
Multiple coverage reflection seismic data provide an important source of information concerning the subsurface. However, due to the stacking and migration techniques used in the processing, the first arrivals are muted and details about the upper part of the sections are generally lost. This paper describes a computerized method for the inverse modelling of laterally varying velocities and shallow depths which are not sufficiently resolved in the reflection seismic processing. The method minimizes, in a least-squares manner, the difference between the observed first arrivals, picked from the reflection traces, and a set of synthetic traveltimes, calculated by ray tracing in a cell model. An initial model, e.g. from a priori knowledge or the application of a conventional interpretation method, is refined iteratively until no further essential improvement can be achieved. Traditional first-arrival inversion methods cannot, in general, provide such flexible modelling. The technique is successfully tested on synthetic data as well as on first arrivals picked automatically from the records of a reflection seismic survey in North Jutland, Denmark.  相似文献   

6.
弹性波方程正演的粗粒度并行算法   总被引:3,自引:3,他引:0       下载免费PDF全文
波动方程正演在地震资料采集、处理、解释与反演中均能发挥重要作用,但现有的基于求解地震波动方程的正演算法由于受庞大计算量的制约而难于大规模应用于工业生产.本文从二维弹性波动方程出发,研究了利用有限差分法并行求解该方程的基本思路与方法,给出了适于并行求解的计算空间划分方法与通信方案,分析了不同参数条件下并行程序的运行时间、加速比与效率.引入消息传递接口(MPI)实现了弹性波方程的并行求解,极大地提高了数值求解弹性波方程的计算效率.  相似文献   

7.
深反射地震剖面技术是揭示岩石圈精细结构的有效手段,获得高质量的原始资料是揭示岩石圈精细结构探讨地球动力学过程的前提和基础.松潘地块地表条件和地下地质构造复杂,资料信噪比低.本文针对松潘地区地表地质条件、激发接收条件及环境等因素,通过实例数据对比分析影响该工区原始单炮记录品质的主要原因,为反射地震勘探数据采集工作提供几点参考和建议.  相似文献   

8.
Seismic anisotropy has an important influence on seismic data processing and interpretation. Although the frequency-domain seismic wavefield simulation has a problem of solving the large scale linear sparse matrix due to the computational limitations, it has some advantages over the time-domain seismic wavefield simulation including efficient inversion using only a limited number of frequency components and easy implementation of multiple sources. To accurately simulate seismic wave propagation in the frequency domain, we also need to choose the absorbing boundary conditions to absorb artificial reflections from edges of the model as we do in the time domain. Compared with the classical boundary conditions including the perfectly matched layer and complex frequency-shifted perfectly matched layer, the complex frequency-shifted multi-axial perfectly matched layer has been proven to effectively suppress the unwanted reflections at grazing incidence and solve the instability problem in the time-domain seismic numerical modelling in anisotropic elastic media. In this paper, we propose to extend the complex frequency-shifted multi-axial perfectly matched layer absorbing boundary condition to the frequency-domain seismic wavefield simulation in anisotropic elastic media. To test the validity of our proposed algorithm, we compare the results (snapshots and seismograms) of the frequency-domain seismic wavefield simulation with those of the time-domain modelling. The model studies indicate that the complex frequency-shifted multi-axial perfectly matched layer absorbing boundary condition is stable in the frequency-domain seismic wavefield simulation in anisotropic media, and provides better absorbing performance than the complex frequency-shifted perfectly matched layer boundary condition.  相似文献   

9.
Controlled-source seismology (CSS) is the primary source of information regarding the fine structure of the lithosphere. The aim of this paper is to provide an overview of the methods that are commonly used to derive Earth models from CSS data with the focus on the wide-angle reflection/refraction method. Some outlook on the future of the CSS is presented with the special emphasis on the full-wavefield based methods like full-waveform inversion, which brings high level of objectivity into modeling, as well as significantly increases spatial resolution. It is stressed that the researchers should be aware of the limitations of how the elastic parameters transcribe into the actual rock properties which should stimulate them to go beyond the simple P-wave modeling and to build multiparameter Earth models based either on the seismic data or constrained by additional geophysical fields in order to derive sound geological interpretation of their models.  相似文献   

10.
通过在同一条测线上应用三种不同地震勘探手段(共偏移距地震反射法、横波反射法与高分辨率折射法)联合反演的方法,获得了测线控制地段内废黄河断层的确切位置、上断点埋深以及速度分布图像.探测结果表明:在薄覆盖层地区的断裂调查中,上述三种技术手段的联合反演要比单独使用其中任何一种手段更加可靠,并能从不同角度查明断层的位置、性质及其特征,为钻孔联合剖面位置的布设和钻孔深度的设计提供地震学依据.经高精度钻孔联合地质剖面证实,三种地震勘探方法反演得到的主要地层界面和构造特征都与钻孔联合地质剖面吻合较好.试验表明了上述三种地震勘探方法在基岩面埋深较浅地区联合反演的可行性以及地震勘探与钻孔联合地质剖面相结合的工作方法的有效性.  相似文献   

11.
Analysis of amplitude variation with offset is an essential step for reservoir characterization. For an accurate reservoir characterization, the amplitude obtained with an isotropic assumption of the reservoir must be corrected for the anisotropic effects. The objective is seismic anisotropic amplitude correction in an effective medium, and, to this end, values and signs of anisotropic parameter differences (Δδ and Δε) across the reflection interfaces are needed. These parameters can be identified by seismic and well log data. A new technique for anisotropic amplitude correction was developed to modify amplitude changes in seismic data in transversely isotropic media with a vertical axis of symmetry. The results show that characteristics of pre-stack seismic data, that is, amplitude variation with offset gradient, can be potentially related to the sign of anisotropic parameter differences (Δδ and Δε) between two layers of the reflection boundary. The proposed methodology is designed to attain a proper fit between modelled and observed amplitude variation with offset responses, after anisotropic correction, for all possible lithofacies at the reservoir boundary. We first estimate anisotropic parameters, that is, δ and ε, away from the wells through Backus averaging of elastic properties resulted from the first pass of isotropic pre-stack seismic inversion, on input data with no amplitude correction. Next, we estimate the anisotropic parameter differences at reflection interfaces (values and signs of Δδ and Δε). We then generate seismic angle gather data after anisotropic amplitude correction using Rüger's equation for the P-P reflection coefficient. The second pass of isotropic pre-stack seismic inversion is then performed on the amplitude-corrected data, and elastic properties are estimated. Final outcome demonstrates how introduced methodology helps to reduce the uncertainty of elastic property prediction. Pre-stack seismic inversion on amplitude-corrected seismic data results in more accurate elastic property prediction than what can be obtained from non-corrected data. Moreover, a new anisotropy attribute (ν) is presented for improvement of lithology identification.  相似文献   

12.
Electrical tomography, which gives good results even in fairly complex geological environments, has given a new lease of life to electrical methods in hydrogeological surveys. Nevertheless, a rapid decline in resolution with increasing depth remains the main problem of the electrical methods. In the Pannonian basin in Croatia, at a test area, combining both electrical tomography and seismic reflection methods provides data that better constrain the lithological and hydrogeological model of the subsurface.Electrical tomography revealed a rather thick packet of sediments with increased resistivity at depths of 40–100 m. Using the electrical forward modelling, the existence of two different hydrogeological models was shown. The first model presupposes a reasonably homogeneous packet of sandy clays or clayey sands, and the other model presupposes the alternation between layers of clays and sands. From the hydrogeological point of view, the second model is perspective, but unfortunately, the use of electrical tomography alone does not allow the ambiguity to be resolved. The separation of these two models became possible using seismic reflection. Three seismic environments were isolated from the seismic profile treated, and the strongest reflections were discovered in the first seismic environment, which covers the depths from 40 to 100 m. It was determined that the second model is more acceptable, because these reflections are caused by lithological changes, that is, the alternations of sands and clays. The interpretation is consistent with exploratory borehole data. The conclusion is that electrical tomography gives data concerning the sediment lithology up to depths of 40 m, but at greater depths combined interpretation of electrical and seismic data constrains the subsurface model better.  相似文献   

13.
南海西北部是我国海洋油气的重要基地.为了研究该区前新生代尤其是中生代油气资源潜力,本文以岩石物性的差异为基础,建立地质界面与物性界面的联系,利用综合地球物理方法来分析目标物性界面的分布特征.在地震资料控制浅层沉积结构的约束下,根据重力资料,通过小波分析位场剥离等方法得到剩余场,由Parker界面反演法反演计算了研究区的重力基底,结合新生代沉积分布得出中生界分布特征并给出了中生代残留盆地的可能分布范围,为分析研究区中生代油气资源潜力提供参考.  相似文献   

14.
日喀则城市活断层地球物理勘探方法和成果   总被引:3,自引:0,他引:3       下载免费PDF全文
日喀则地质资料匮乏,地球物理勘探资料更加稀缺,该地区在此之前没有开展过地震勘探的工作.本文针对日喀则地区活动断裂,采用夯源为人工震源的浅层地震勘探方法,结合小折射调查低速层,详细讨论工作中的关键性技术问题;提出在该地区地质条件下实施隐伏断裂勘探时的地震仪器选择、方案设计、参数选取、数据处理、断层识别的基本方法;查明拉堆—乃东断裂、抓各落断裂、毕定—甲舍拉断裂、甲岗—谢通门断裂的走向、产状、上断点埋深及其在地表的垂直投影位置等主要参数.为日喀则地区的深浅构造关系等研究提供基础资料,填补该地区地球物理勘探资料的空白.  相似文献   

15.
The existing expressions of elastic impedance,as the generalized form of acoustic impedance,represent the resistance of subsurface media to seismic waves of non-normal incidence,and thus include information on the shear-wave velocity.In this sense,conventional elastic impedance is an attribute of the seismic reflection and not an intrinsic physical property of the subsurface media.The derivation of these expressions shares the approximations made for reflectivity,such as weak impedance contrast andisotropic or weakly anisotropic media,which limits the accuracy of reflectivity reconstruction and seismic inversion.In this paper,we derive exact elastic impedance tensors of seismic P-and S-waves for isotropic media based on the stress-velocity law.Each componentof the impedance tensor represents a unique mechanical property of the medium.Approximations of P-wave elastic impedance tensor components are discussed for seismic inversion and interpretation.Application to synthetic data and real data shows the accuracy and robust interpretation capability of the derived elastic impedance in lithology characterizations.  相似文献   

16.
True-amplitude (TA) migration, which is a Kirchhoff-type modified weighted diffraction stack, recovers (possibly) complex angle-dependent reflection coefficients which are important for amplitude-versus-offset (AVO) inversion. The method can be implemented using existing prestack or post-stack Kirchhoff migration and fast Green's function computation programs. Here, it is applied to synthetic single-shot and constant-offset seismic data that include post-critical reflections (complex reflection coefficients) and caustics. Comparisons of the amplitudes of the TA migration image with theoretical reflection coefficients show that the (possibly complex) angle-dependent reflection coefficients are correctly estimated.  相似文献   

17.
用地震反射波定量解释煤层厚度的方法   总被引:6,自引:0,他引:6  
一、引言 工业可采煤层厚度一般为1.5m,如何从地震资料上准确圈定1m厚的煤层边界、并定量解释煤层厚度、准确计算地质储量,国外一些学者研究了薄层地震反射波的动力学特征与薄层厚度的关系后,得出了不同的薄层垂直分辨率标准,Widess用零相位子波作实验时,发现当薄层厚度为λ/8(λ是地震子波的主波长)时,反射波形正好是入射波的导数,并可直观地鉴别顶底反射;Kallweit利用可控震源研究了薄层响应的频谱后,提出了分辨地震波的极限为1/(1.4f)(f为地震子波的上限频率),经主频换算后,此  相似文献   

18.
A new time-domain method is introduced for the calculation of theoretical seismograms which include frequency dependent effects like absorption. To incorporate these effects the reflection and transmission coefficients become convolutionary operators. The method is based on the communication theory approach and is applicable to non-normal incidence plane waves in flat layered elastic media. Wave propagation is simulated by tracking the wave amplitudes through a storage vector inside the computer memory representing a Goupillaud earth model discretized by equal vertical transit times. Arbitrary numbers of sources and receivers can be placed at arbitrary depth positions, while the computational effort is independent of that number. Therefore, the computation of a whole plane-wave vertical seismic profile is possible with no extra effort compared to the computation of the surface seismogram. The new method can be used as an aid to the interpretation of plane-wave decomposed reflection data where the whole synthetic vertical seismic profile readily gives the interpreter the correct depth position of reflection events.  相似文献   

19.
The seismic signatures of three reefs of the Upper Elk Point Subgroup (Givetian Stage) of the Western Canada Sedimentary Basin are documented and analysed on the basis of variations in seismic image of particular lithologic units, lateral amplitude and/or phase changes, structural relief and velocity-generated relief, as rendered by the reflection data. The effects on seismic signatures of spatial geological variations resulting from such phenomena as differential compaction, reef-focused salt dissolution, palaeotopography, lateral and vertical facies variations, regional dip, and reservoir morphology are discussed. The usefulness of seismic data in clarifying relationships between reefs and their adjacent sedimentary sections, particularly in cases where well control is sparse, is also considered. Such documentation of seismic signatures from known reefs using geophysical and geological analysis can establish criteria to enable recognition of similar buildups elsewhere. Three example reefs are presented, each typical of a particular area and environment of W. Canada. The first is from the Winnipegosis Formation of SE Saskatchewan, the second and third from the Rainbow Member and Upper Keg River Reef Member, respectively, of the Keg River Formation of NW Alberta. All three of these carbonate buildups developed in the evaporitic Elk Point Basin. However, the degree of salt encasement and subsequent dissolution varied greatly, as do the resulting seismic effects. For these three reef types, the typical elements of their seismic signatures have been compiled and are here summarized.  相似文献   

20.
The state-of-the-art joint migration inversion faces the so-called amplitude-versus-offset challenge, due to adopting over-simplified one-way propagation, reflection and transmission operators to avoid over-parameterization in the inversion process. To overcome this challenge, we apply joint migration inversion to horizontally layered media (or 1.5-dimensional media) and parameterize the solution space via density and velocity models. In this scenario, one-way propagation, reflection and transmission operators required by the joint migration inversion process can be analytically and correctly derived from the subsurface models, so the amplitude-versus-offset challenge is successfully overcome. We introduce a new concept, which is named ‘inverse propagation’, into our 1.5-dimensional amplitude-versus-offset joint migration inversion. It can correctly reconstruct subsurface wavefields by using a surface-recorded receiver wavefield with all the influence of transmission, reflection and multiples accounted for. A synthetic example is used to demonstrate the correctness of the inverse propagation. This work is the foundation to further develop the 1.5-dimensional amplitude-versus-offset joint migration inversion technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号