首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The groundwater tracer injection and withdrawal tests are often carried out for the determination of aquifer solute transport parameters. However, the parameter analyses encounter a great difficulty due to the radial flow nature and the variability of the temporal boundary conditions. An adaptive methodology for the determination of groundwater solute transport parameters using tracer injection and withdrawal test data had been developed and illustrated through an actual case. The methodology includes the treatment of the tracer boundary condition at the tracer injection well, the normalization of tracer concentration, the groundwater solute transport finite element modelling and the method of least squares to optimize the parameters. An application of this methodology was carried out in a field test in the South of Hanoi city. The tested aquifer is Pleistocene aquifer, which is a main aquifer and has been providing domestic water supply to the city since the French time. Effective porosity of 0.31, longitudinal dispersivity of 2.2 m, and hydrodynamic dispersion coefficients from D = 220 m2/d right outside the pumping well screen to D =15.8 m2/d right outside the tracer injection well screen have been obtained for the aquifer at the test site. The minimal sum of squares of the differences between the observed and model normalized tracer concentration is 0.00119, which is corresponding to the average absolute difference between observed and model normalized concentrations of 0.035 5 (while 1 is the worst and 0 is the best fit).  相似文献   

2.
弥散理论是污染质在含水层中运移模型的基本理论.但在实际应用中存在着不少问题和争议.本文对污染质在含水层中运移的弥散作用进行了分析探讨.并应用MOC水质模型对弥散参数的作用进行了分析,证明了在一般情况下,污染质在含水层中的运移主要受对流作用控制,弥散参数的变化对水质模型结果的影响相对较小.在特定的水文地质条件下,弥散作用对污染质的运移是重要的.  相似文献   

3.
分析了目前孔隙地下水流三维有限差分数值模拟中对含水层系统三维空间离散存在的问题,针对自然界孔隙含水层与隔水层空间分布的不连续性与厚度的不均匀性,研究了基于GIS的孔隙含水层系统三维空间离散实现的技术路线,提出了基于GIS与不规则六面体元的孔隙含水层系统的三维空间离散方法,最大限度地保证了离散体元中含水层类型的单一性,提高了孔隙地下水流模拟模型三维空间离散的精度。  相似文献   

4.
肖勋  施文光  王全荣 《地球科学》2020,45(4):1439-1446
径向弥散是指溶质在径向流场下的迁移规律,被广泛用于描述含水层修复领域中污染物的迁移过程.然而,在现有描述径向弥散的模型中,往往忽略了井内混合效应对溶质径向弥散的影响.建立新的注入井附近溶质径向运移动力学模型,同时考虑井内混合效应与弥散度的尺度效应.采用Laplace变换推导该模型的半解析解,利用Stehfest数值逆变换获取溶质在实数空间的解.通过与不考虑混合效应的模型对比研究混合效应对溶质径向弥散的影响,并利用室内渗流槽中的溶质径向弥散实验数据验证模型的合理性与适用性.结果表明:混合效应和尺度效应对注水井附近溶质径向弥散有显著影响.具体地讲,井内的混合效应越显著,在井壁处及含水层中的穿透曲线越低,溶质浓度达到峰值所需时间越长,与不考虑混合效应模型的差异越明显;随尺度效应的增强,溶质提前穿透且扩散范围变大,溶质浓度达到峰值所需时间越长;与前人的模型相比,本研究模型能更好地模拟注水井附近的溶质径向弥散问题.   相似文献   

5.
A three-dimensional (3D) mass transport numerical model is presented. The code is based on a particle tracking technique: the random-walk method, which is based on the analogy between the advection–dispersion equation and the Fokker–Planck equation. The velocity field is calculated by the mixed hybrid finite element formulation of the flow equation. A new efficient method is developed to handle the dissimilarity between Fokker–Planck equation and advection–dispersion equation to avoid accumulation of particles in low dispersive regions. A comparison made on a layered aquifer example between this method and other algorithms commonly used, shows the efficiency of the new method. The code is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between simulated and measured values, with and without the presented method, also proves the accuracy of the new algorithm.  相似文献   

6.
地下含水层储能两阶段热量运移数值模型研究   总被引:5,自引:0,他引:5  
为了简单而准确地预测地下含水层储能情况,考虑了地下含水层储能过程时间跨度大、储能保温分阶段的实际特点,分析了地下含水层流动和换热模型物理参数的对比特点,以热平衡和热扩散原理为基础,建立分成两个连续阶段的地下含水层储能数值计算模型.模型求解中,采用控制容积法,以全隐格式进行热扩散方程的离散化,然后应用Jacobi方法迭代求解,模拟结果和实际观测数据吻合很好.该模型还分析了含水层储能循环采灌过程中抽出储能水的温度变化的一般特点.  相似文献   

7.
矿井水深井回灌是矿井水“转移存储”处理的主要形式,根据鄂尔多斯盆地煤矿区地质和矿井水特征,从回灌目的层地下水与矿井水的匹配性、上下岩层的隔水性、回灌层的渗透性以及封闭性角度提出了矿井水回灌目的层选取依据。并以地下水达西定律和Dupuit理论为基础,建立极坐标系完整注水井稳定流数学模型,得出在稳定注水条件下,回灌量与注水层渗透系数、厚度、回灌压力、水位埋深以及回灌井直径正相关,与影响半径负相关,与回灌层埋深无关。提出了矿井水深层回灌水动力和溶质运移耦合仿真模型构建方法,并以矿井水回灌试验案例为分析对象,模拟得出矿井水回灌过程中含水层水压形成以注水井为中心的“高位水丘”,且注水压力越大,回灌量增加较为明显,模型分析结果与现场试验结果基本一致。溶质运移范围形成以注水井为中心的“圆柱状”弥散形态,特征离子浓度沿回灌井两侧变化剧烈,回灌层特征离子浓度被迅速稀释,随着时间的延伸,弥散稀释范围增加相对较小,说明矿井水回灌对深部高浓度含水层地下水水化学影响程度不大,研究成果可为西部煤矿区矿井水高效回灌处理提供科学依据。   相似文献   

8.
To better understand the movement and transport of water and pollution through the coarse gravel unsaturated zone, the presented research was conducted to estimate water flow and transport processes with a tracing experiment in a lysimeter in the Selniška Dobrava. A combined tracing experiment was performed with deuterated water and the fluorescent dye—uranine. The fastest and dominant flow velocities were calculated based on injection time, the first tracer appearance time and the time of highest concentration. Mean flow velocity and vertical dispersion were estimated by an analytical best-fit method using one-dimensional convection–dispersion model. Deuterium was confirmed as an ideal conservative tracer and a more suitable tracer than dye (uranine) for the study of water flow in the unsaturated zone of a coarse gravel aquifer. The retardation factor of the dye as compared with deuterium was 1.13–1.75, which is in agreement with previously published results. Artificial tracers, especially deuterated water, were also identified as a very useful tool to assess other properties and differences in water flow in the unsaturated zone of a coarse gravel aquifer such as velocity and dispersion.  相似文献   

9.
Conjunctive management of surface water and groundwater requires sophisticated spatial and temporal analysis. In situations involving multiple jurisdictions such as state boundaries, management problems are magnified due to often conflicting regulations and policies. A transient MODFLOW model of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer/river system mutually accepted by both the states of Idaho and Washington, USA, was used to evaluate regional solutions to potential water shortages through the use of strategically placed infiltration basins or injection wells. Artificial recharge of the SVRP aquifer was simulated using diversions from Lake Pend Oreille during winter periods when flows are high and excess water is available. Alternative locations for potential wells and detention basins were examined. Lag times for the water to impact stream/groundwater interaction areas along the Spokane River were evaluated to assess the potential for augmenting stream flows from July through September. Results indicated that the aquifer could be used to improve low-flow season streamflow values utilizing both infiltration basins and injection wells with winter surface water diversions. Depending on the location, as much as 30% of the winter diversion rate could be lagged to improve summer flows at the Spokane gage. Thus, a regional mitigation strategy is scientifically feasible.  相似文献   

10.
Water management is one of the most challenges in Algeria, a semi-arid Mediterranean country confronted to a serious water stress. The country will have to endure, beyond 2025, a situation of chronic water penury, adding an excessive pollution of the majority of groundwater reservoirs. The management of water resources by combined approach using hydrogeological model and nitrates evolution model was experimented in the Middle Soummam valley. The alluvial aquifer, offering good hydrodynamic and geometrical characteristics, is over-exploited, providing in drinking water Akbou and Tazmalt cities and irrigation perimeters. If exploitation continues at these steady paces, the depletion of the water resource and the hydrochemical imbalance will be inevitable. On the one hand, the results of hydrodynamic model, based on an increase of the water takings and simulated needs from 24.71 Mm3/year in 2015 into 39.69 Mm3/year in 2030, show a critical withdrawal. The aquifer budget expresses the inversion of flow between the wadi and the aquifer where the wadi feeds the groundwater reservoir. This hydrodynamic inversion was attributed to simulated pumping rates which increased and exceeded 100,000 m3/day, but the aquifer was partially relieved by the weight of the exploitation through Tichy Haf dam. The water management strategy adopted in this study was based on management measures promoting zones, which have been delimited between Tazmalt and Akbou, and containing important water quantities available in the axis of the valley. However, according to the depleted in isotopes of 18O and 2H, which could be explained by the influence of a paleoclimatic effect and suggested that the aquifer recharge would have largely been made under a colder climate, pumped groundwater could be old, and the implementation of new pumping sites has been studied minutely. On the other hand, the hydrogeochemical modelling allowed following nitrates concentrations in order to project their evolution. Four wells on 25 react in face to the imposed conditions in each scenario simulated until 2030, showing inertia of pollution, and confirmed after three series of tests. This inertia would be related to the hydraulic gradients and hydraulic conductivities, aquifer thickness and recharge. The low hydraulic gradients lead to a rather slow flow velocity and thus to an inertia in the dispersion of nitrates, with a mass transport weakened by the hydrodynamic conditions. It is also related to the aquifer thickness; when the aquifer is powerful (65–85 m), the stock of water would be important and allows a dilution process. The reverse is true for the simulated boreholes where the concentrations remain invariant; the aquifer is less powerful (32–37 m). Finally, the recharge effect through the rain was evoked; the aquifer is unconfined, and the rain water and pollution that reached the piezometric level can remain in position in slow hydrodynamic conditions. The methodology was demonstrated through a combination of monitoring and modelling for both water quantity and quality and the importance to use numerical models to support water resources management strategy in the Mediterranean aquifers.  相似文献   

11.
迄今为止,注入时间和静水压力对溶质在深层承压地热水中的运移规律影响研究少有报道。通过模拟35℃的低温地热环境,开展了注入时间1,2,3,4,5 h以及静水压力0,6,9 MPa条件下Cl-的运移柱模拟试验。采用CXTFIT 2.1软件进行数值模拟,探讨了孔隙型热储砂土中Cl-的运移规律和影响因素。结果表明:在模拟的低温孔隙型热储层中,不同注入时间和静水压力下,Cl-的运移曲线均呈正态对称分布,一维对流弥散(CDE)模型也可较好地表征其穿透曲线,因此溶质扩散过程符合菲克定律。注入时间的不同,会引起Cl-的穿透曲线、运移参数发生变化,这与不同注入时间条件下溶质注入总量、柱内溶质浓度差以及分子扩散能力不同有关。在不同静水压力条件下,弥散系数从0 MPa的25.22 cm2/h增加到9MPa的36.13 cm2/h,分子扩散系数、机械弥散系数以及弥散度也随之增大,因此溶质的弥散作用随静水压力的增大而增强。研究结果对于丰富地下水的溶质运移理论具有重要意义。  相似文献   

12.
选择北京平原区水文地质、环境地质等方面都比较典型的沙子营垃圾堆放场,建立了其水文地质模型。在充分收集资料、分析得出部分计算所需参数后,采用现场弥散实验、勘查取样测试等方法,求得了该含水层的弥散系数等参数;用二维非稳定流溶质运移方程对污染物在此含水层中的迁移扩散规律、速度和污染范围等进行了模拟计算;采用现场钻探、取样测试分析等方法,评价了该含水层的实际污染状况。实验模拟计算和现场调查结果表明:污染物在潜水含水层中的运移规律遵循二维非稳定流场中的溶质运移方程,污染物在潜水含水层中的运移速度约为86.25m/a,迁移扩散主要发生在地下水流向上,侧向扩散宽度极小,是地下水流向上的1/17。  相似文献   

13.
基于FlAC(3D)模型的新集一矿岩溶水危险性研究   总被引:1,自引:0,他引:1  
新集一矿1#煤层为矿区埋深最大的山西组煤层,太原组灰岩含水层是1#煤层开采时威胁最大的含水层。为合理评价1#煤层受太原组灰岩突水的威胁及煤层的可采性,按照煤层底板隔水层厚度、岩性组合及其力学性质,建立了FlAC3D模型。通过该数值模型对1#煤层进行模拟40m、80m、120m三次开挖,并用顶底板岩层的主应力差来反映其所处的变形阶段,分析了顶板来压前后底板的不同应力状态对突水危险性的影响,获得了开采1#煤层的顶板最大悬顶距、底板最大破坏深度等参数,认为开挖长度达到105m时,是最易突水位置,从而为后续详细勘探和工作面设计工作提供了参考。  相似文献   

14.

The progressive electrification of the building conditioning sector in recent years has greatly contributed to reducing greenhouse gas emissions by using renewable energy sources, particularly shallow geothermal energy. This energy can be exploited through open and closed shallow geothermal systems (SGS), and their performances greatly depend on the ground/groundwater temperature, which can be affected by both natural and anthropogenic phenomena. The present study proposes an approach to characterize aquifers affected by high SGS exploitation (not simulated in this work). Characterization of the potential hydro/thermogeological natural state is necessary to understand the regional flow and heat transport, and to identify local thermal anomalies. Passive microseismic and groundwater monitoring were used to assess the shape and thermal status of the aquifer; numerical modeling in both steady-state and transient conditions allowed understanding of the flow and heat transport patterns. Two significant thermal anomalies were detected in a fluvio-glacial aquifer in southern Switzerland, one created by river water exfiltration and one of anthropogenic nature. A favorable time lag of 110 days between river and groundwater temperature and an urban hot plume produced by underground structures were observed. These thermal anomalies greatly affect the local thermal status of the aquifer and consequently the design and efficiency of current and future SGS. Results show that the correct characterization of the natural thermo-hydrogeological status of an aquifer is a fundamental basis for determining the impact of boundary conditions and to provide initial conditions required to perform reliable local thermal sustainability assessments, especially where high SGS exploitation occurs.

  相似文献   

15.
王媛  刘阳 《岩土力学》2014,35(6):1711-1717
将二氧化碳注入到深部咸水层中,形成复杂的多组分、多相流系统。二氧化碳在压力梯度、浓度差作用下不断扩散,逐步带走盐溶液中的水分,导致各组分的相态变化,盐结晶析出,阻塞了咸水层孔隙通道,从而降低了二氧化碳的注入效率,研究该干化效应的影响因素并为工程选址提供依据具有重要意义。采用二维径向模型建立多相流体的流动方程,并结合相对渗透率和毛细压力方程探讨二氧化碳注入速率、咸水层含盐量、毛细压力的特征参数对干化效应的影响,干化效应可用固体饱和度值进行定量描述。结果表明:二氧化碳运移分3个区域:干涸区、气液相混合区及液相咸水区,干化效应主要发生在井周的干涸区。在毛细作用下固体饱和度随注入速率的减小而增大,随咸水层含盐量增大而增大,随毛细作用增大而增大。因此,提高二氧化碳的注入速率,向咸水层中注水稀释含盐量或选择粒径较大的均质咸水层减小毛细作用,均可降低盐结晶对孔隙通道的阻塞,提高注入效率。  相似文献   

16.
A large body of existing theories of flow and contaminant transport in aquifers ignore the presence of recharge, eliminate the boundary conditions, neglect transient conditions in groundwater flow, conceive hydraulic gradients as linear, and require parameter variability to be stationary and Gaussian. The most outstanding and difficult to justify assumption is the subjective small size of the stochastic terms (i.e., small perturbation methods), which usually is forced by considering the logarithm of the hydraulic conductivity. Several problems in flow and contaminant subsurface hydrology, such as the enhanced dispersion parameters with plume size or time after injection, remain to be observed in the light of a stochastic theory that allows a more realistic consideration of physical and hydrologic properties. In this article, an attempt is made to reformulate a contaminant transport equation (the variable dispersion equation, VDE) with transport parameters in terms of regional hydrologic and aquifer hydraulic properties, such as recharge rate, spatially random transmissivity, hydraulic gradient, aquifer thickness, and soil porosity. Subsequently, a general analytic procedure, the method of decomposition, is used to derive a solution to the VDE. This procedure does not require small perturbation, logarithmic transformations, or specific probability law assumptions. Comparison tests with existing theoretical and field results are given. The tests illustrate the enhanced dispersion and shifting concentration effects produced by the variable dispersion equation. Finally a generalization of the method to nonstationary dispersion in three-dimensional domains is proposed.  相似文献   

17.
A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.  相似文献   

18.
观测井水质垂向差异由三因素引起:抽、灌水过程中含水层水质改变、近井口表层水体氧化、含水层本身存在水质垂向分带。由此易造成不同浓度间水质弥散,从而对使用定深取样器取样带来影响。减缓取样器下放速度,适当加密取样频率有助于克服其影响。在观测井滤水管中部取样具有代表性,可用于定量研究。  相似文献   

19.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

20.
本文提出了利用单孔进行弥散实验,确定地下水含水层弥散度的新方法,给出了数学模型、求解过程及方法。提出了用计算机自动处理求得最佳参数的直线回归法与非线性迭代法相结合的方法。不但进行了理论上的详细推导,而且通过实例进行了验证,结果很好。本文提出的方法原理通俗易懂,计算过程简单,易于实行,成本低,具有重要实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号