首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Ductile deformation and polyphase metamorphism in the Ossa-Morena zone of the Iberian massif are related to two major tectonothermal episodes of Cadomian (late Neoproterozoic to early Cambrian) and Variscan age (middle to late Paleozoic). The available petrological, structural and geochronological data suggest that a number of tectono-metamorphic and magmatic episodes occurred during the 620–480 Ma interval that would comprise a complete Cadomian Wilson cycle. The geodynamic scenario was that of an Andean-type continental margin. An evolutionary model is presented for this orogeny comprising stages of volcanic arc generation, crustal thickening, back-arc extension, tectonic inversion and cratonization. A correlation with comparable areas from pre-Mesozoic massifs elsewhere in Europe is proposed, in particular with the Armorican massif of northern France.  相似文献   

2.
The problems of tectonic control of composition, size, and morphology of synkinematic crustal granitoids are discussed by the example of the Western Sangilen granites (South-East Tuva). Comparative analysis was performed for felsic bodies and massifs spatially confined to tectonic zone (Erzin shear zone): Erzin migmatite–granite complex (510–490 Ma), Matut granitoid massif (510–490 Ma), Bayankol polyphase gabbro-monzodiorite–granodiorite–granite massif (490–480 Ma), and the Nizhneulor Massif (480–470 Ma). It is shown that synkinematic felsic melts during the transition from collisional compression to transpression were formed at different crustal levels. An increase of shear component provided favorable conditions for the migration of felsic melts, increase of size and morphology of intrusive bodies from vein type to harploith (likely, loppoliths and laccoliths) and further to stocks. All kinematic granitoids of the Erzin tectonic zone are ascribed to the crustal S-type granites. Dispersion and average chemical composition of the synkinematic granites strongly depend on the degree of their “isolation” from protolith. From auto- and paraautochthonous granitoids to allochthonous granites, the compositional dispersion decreases and the chemical composition is displaced toward I-type magmatic rocks.  相似文献   

3.
朝鲜北部狼林地块构造归属与地壳形成时代   总被引:18,自引:18,他引:0  
朝鲜半岛北部的狼林地块一直被认为是中朝克拉通的重要组成部分。传统认为,它向南与我国辽东半岛的辽南太古宙地体相接,与其北部的鞍山-辽北-吉南太古宙地体(龙岗地块)具有基本类似的物质组成。两大太古宙地体之间是著名的以辽河群、集安群和老岭群为代表的辽吉古元古代岩系。辽吉岩系目前最主要的学术争论是,它是原本一体的太古宙地体的裂解产物,还是两个性质不同的太古宙地体拼合的结果。无论采用何种模型,学术界都普遍接受狼林地块主要由太古代岩石组成这一基本假定。为准确厘定狼林地块的地壳性质与形成时代,本文选择大同江、清川江、城川江、长津江、厚州川、厚昌江和秃鲁江中的河沙样品作为研究对象。这些河流均发源于狼林山脉,是狼林地块的核心区域,因而这些河流沉积物能够较好地全面反映狼林地块的物质组成情况。上述河流不同部位8件样品的分析结果显示,狼林地块主要由18~19亿年的古元古代岩石组成,太古宙岩石比例极为有限。但锆石Hf同位素模式年龄集中在28亿年左右,与华北克拉通全岩样品的Nd同位素模式年龄基本一致。结合狼林地块大量麻粒岩相变质表壳岩系和古元古宙花岗岩的发育,本文认为狼林地块是与辽吉岩系基本类似的古元古代地体,它可能是华北克拉通在古元古代期间东南大陆边缘的巨型造山带,我们可将其简称为辽-吉-朝古元古代造山带。因此,先前认为狼林地块主要由太古宙岩石组成的观点需要重新检查和认识。  相似文献   

4.
The Moa-Baracoa and Mayarí-Cristal massifs (eastern Cuba) are two ophiolitic complexes mainly constituted by harzburgite tectonites and minor dunites, cut by gabbroic dykes. The Moa-Baracoa massif exhibits a well developed Moho transition zone and an incomplete crustal section made up of layered gabbros and tectonically emplaced pillow basalts. A plutonic crustal section is absent in the Mayarí-Cristal massif and mantle tectonites are in tectonic contact with arc-related volcanic rocks. Mantle peridotites are very refractory in terms of modal composition, whole rock major element and HREE contents implying that Moa-Baracoa and Mayarí-Cristal harzburgites are residues after high degrees (20–30%) of partial melting. The relative enrichment of Th, Nb, Ta and LREE in peridotites is due to re-equilibration of melting residues with percolating melts. Peridotites lost on average 6 wt% of relative MgO by intense seafloor weathering. REE contents and Mg# of melts in equilibrium with cumulate gabbros from the Moho transition zone and crustal section of the Moa-Baracoa massif coincide with those of the spatially-related pillow basalts. On the other hand, no geochemical relation has been inferred between melt in equilibrium with Mayarí-Cristal segregate and the spatially-related arc volcanics. Our results indicate that the Mayarí-Baracoa Ophiolitic Belt formed at an original back-arc spreading centre. The Moa-Baracoa massif represents a portion of MORB-like lithosphere located nearby a back-arc mid-ocean spreading ridge, and the Mayarí-Cristal massif represents a piece of transitional (MORB to IAT) mantle located closer to the paleo-volcanic arc than Moa-Baracoa.  相似文献   

5.
The Ronda peridotites form the largest mass of subcontinental mantle outcropping on land. Unlike other orogenic lherzolite massifs, the two main bodies of Ronda (the Sierra Bermeja and Sierra Alpujata massifs) are unique cases where ductile shear zones linked to the hot thrusting of mantle over continental crustal rocks are well exposed. We present a new insight into the deformation localization in these shear zones based on structural, fabric and petrological data. The Ronda peridotites show increasing deformation towards the continental footwall rocks, from porphyroclastic rocks to ultramylonites. Garnet-pyroxenites from the basal shear zone of the Alpujata massif yield ca. 1100 °C and 1.4 GPa for the mylonitization. Such conditions promoted partial melting and the formation of felsic dynamothermal aureoles from the underlying crustal rocks. Subsequent deformation is mainly localized in the dynamothermal aureoles, since they are weaker than the peridotites. Both aureoles show marked strain gradients towards the contact but record different kinematics. In Sierra Alpujata, kinematic criteria indicate a top-to-the ENE shear sense, whereas in Sierra Bermeja the felsic mylonites provide a top-to-the NNW motion. A transpressional setting is proposed to explain such kinematic shift.  相似文献   

6.
First isotopic-geochemical data were obtained on basite-ultrabasite rocks from the southern Kovdor area that were previously provisionally ascribed to the drusite (coronite) complex based on the occurrence of drusite (coronite) textures. The mineral and whole-rock Sm-Nd isochron age determined for five rock samples from the Sorkajoki and Poioiva massifs and the massif of Elevation 403 m turned out to be close (within the error): 2485 ± 51, 2509 ± 93, and 2517 ± 75 Ma, respectively. The crystallization age was evaluated for the two massifs (Poiojovski and Mount Krutaya Vostochnaya) by the U-Pb system of zircons. Our samples contained both magmatic and xenogenic crustal zircons, whose age was estimated at 2700 Ma. The crystallization age of the massifs themselves (data on the magmatic zircons) is 2410 ± 10 Ma. The undepleted character of the mantle source (ɛNd = +0.9) and the much younger age of the massifs than that of other known manifestations of ultrabasic magmatism in the territory of Karelia and the Kola Peninsula (including the layered pluton classic drusite massifs) suggest that the central part of the Belomorian Mobile Belt hosts one more independent intrusive rock complex, which has never been recognized previously and which is different from typical drusites.  相似文献   

7.
The paper reports results of petrological-geochemical, isotope, and geochronological studies of the Preobrazhenka gabbro–granitoid massif located in the Altai collisional system of Hercynides, Eastern Kazakhstan. The massif shows evidence for the interaction of compositionally contrasting magmas during its emplacement. Mineralogical–petrological and geochemical studies indicate that the gabbroid rocks of the massif were formed through differentiation of primary trachybasaltic magma and its interaction with crustal anatectic melts. Origin of the granitoid rocks is related to melting of crustal protoliths under the thermal effect of mafic melts. The mantle–crust interaction occurred in several stages and at different depths. A model proposed here to explain the intrusion formation suggests subsequent emplacement of basite magmas in lithosphere and their cooling, melting of crustal protolith, emplacement at the upper crustal levels and cooling of the granitoid and basite magmas. It was concluded that the formation of gabbro-granitoid intrusive massifs serves as an indicator of active mantle–crust interaction at the late evolutionary stages of accretionary–collisional belts, when strike-slip pull-apart deformations causes the high permeability of lithosphere.  相似文献   

8.
匡耀求  张本仁 《岩石学报》1995,11(2):203-204
各类地质体的地球化学特征是地球物质化学运动的记录。深部岩石圈层次卷入地表地质作用的程度反映区域地壳的活动性。古生代南秦岭的区域地壳活动性在早古生代有增强的趋势,晚古生代则又逐渐减弱,以志留纪早期区域地壳活动性最强;空间上以紧邻松潘-甘孜地块的康县-褒河小区和紧邻扬子克拉通北缘的紫阳-竹溪小区构成的近东西向狭长地带区域地壳活动性最强,而且东西两段各有特色。这种区域地壳活动性的时空变化格局可能与新元古代至早古生代松潘-甘孜与扬子联合大陆北部边缘的地壳伸展及早古生代末与华北地台的碰撞拼合有关。  相似文献   

9.
Charnockitic magmatism in southern India   总被引:2,自引:0,他引:2  
Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba-Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba-Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba-Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher {ie565-01} favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.  相似文献   

10.
Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba−Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba–Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation–fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.  相似文献   

11.
本区属于西伯利亚地块和塔里木—中朝地块之间的古生代陆间地槽,经历了由活动—稳定—活化解体—再稳定的演化过程,可分为两大变质旋回。在前震旦纪变质旋回中,先后发生了太古期、早元古期和晚元古期变质作用,它们的热流值表现为由高到低的旋回性变化。在古生代变质旋回中,加里东期和华里西期变质作用广泛发育,它们的变质作用类型表现为多样性的特点,变质带则是具有由北部和南部边缘向内部迁移的现象。  相似文献   

12.
于双忠 《地质论评》1999,45(2):113-113
通过对典型活动断裂两盘重力场特征的对比与分析,发现具有大面积布各重力负异常(或相对我异常)的地块总是向赤道方向运动,而布格重力正异常(或相对正异常)的地块向极点方向运动,布格重力异常图反映了密度情况,正异常带为大密度地块,负异常带为小密度地块,从理论分析得知,地块的密度变化导致了受力条件的改变,致使地块失稳产生运动,岩浆活动是造成地块密度变化的重要因素。  相似文献   

13.
Basement is constituted of rocks which belong to a previous orogenic cycle which have been reactivated and incorporated into a younger cycle. Basement massifs may be classified according to their relative position in an orogen as external or internal massifs. They may also be categorized according to their role in deformation, as thrust-related, fold-related and composite massifs. All Appalachian external massifs were transported following their removal from the overridden edge of the ancient North American continental margin. Most of the internal massifs are also probably transported, but several (Pine Mountain and Sauratown Mountains) may be present as windows exposing parautochthonous basement beneath the main thrust sheet. The latter reside immediately west of the low (west) to high (east) gravity gradient which probably outlines the old edge of Grenvillian crust. Reactivated crustal material generated during early Palaeozoic orogeny plays the same mechanical role in reactivation as basement from the previous Grenville cycle. The domes of the Bronson Hill anticlinorium cored with Ordovician or older gneisses illustrate this behaviour. Basement (Grenville) massifs are distributed throughout the Appalachians as a belt of external massifs (Blue Ridge, Reading Prong, Hudson and Berkshire Highlands, Green Mountains, and Long Range Mountains) along the western edge of the crystalline metamorphic core. Additionally, internal massifs are also present (Pine Mountain belt, Tallulah Falls and Toxaway domes, Sauratown Mountains anticlinorium, State Farm gneiss dome, Baltimore Gneiss domes, Mine Ridge anticline, and Chain Lakes massif). Basement internal massifs probably served to localize thrusts by causing them to ramp over and around the massifs. Their antiformal shape may in part be as much related to thrust mechanics as to folding.  相似文献   

14.
The compositional and isotope–geochemical features of zircons from wehrlite of the Feklistov massif, which formed platinum coastal placers, are discussed in this paper for the first time. Zircons from wehrlite of the Feklistov massif, similarly to worldwide zoned clinopyroxenite–dunite massifs, are characterized by different morphology, composition and a wide spectrum of ages (from 2.717 to 0.373 Ga). The Late Devonian age (373.2 ± 7.5 Ma) of zircons allows us to characterize the timing of the formation of wehrlite from the Feklistov massif and to correlate its emplacement with a significant superplume event, which covered the Siberia and Laurussia continents. The geological meaning of this dating refers to limiting the lower age boundary for emplacement of the Feklistov clinopyroxenite–dunite massif into the Earth’s crust, which does not contradict geological observations.  相似文献   

15.
朝鲜半岛与华北地质之对比研究:进展与问题   总被引:7,自引:5,他引:2  
翟明国 《岩石学报》2016,32(10):2915-2932
华北与朝鲜半岛山水相连,传统上称为中朝克拉通或中朝地块。但是中朝的地质对比研究并不深入。作者所在的研究组有幸同时与南北朝鲜半岛双方展开了合作研究达十年以上,内容涉及到前寒武纪基底、古生代沉积盆地、造山带演化、以及中生代岩浆活动。本文是对我们最新研究成果的一个简要总结,并提出一些仍未解决的或具争议的相关地质问题,希望以此能推动中朝地质和东北亚地质的研究。研究结果总结如下:(1)朝鲜半岛可划分为三个陆块,从北到南分别为狼林、京畿和岭南陆块,分别被临津江和沃川构造带分割;(2)三个陆块的前寒武纪基底虽有差别,但本文认为它们是相似的,并可与华北克拉通基底对比;(3)狼林地块的平南古生代盆地以及位于京畿陆块和岭南陆块之间的太白山古生代盆地与华北古生代盆地可对比;(4)临津江和沃川构造带的演化还有待深入研究,它们并不具有陆陆碰撞造山带的特征;(5)在京畿陆块西南部发现了含榴辉岩的三叠纪变质杂岩(洪城杂岩),其变质时代和岩石组合都可以和苏鲁造山带对比,不含超高压变质矿物。这表明苏鲁造山带东延到朝鲜半岛,并在半岛的京畿陆块西南缘登陆。但是洪城杂岩出露有限,没有穿越切割半岛的证据,因此可能沿半岛西部断裂局部分布或在半岛西缘尖灭,其空间分布需进一步研究;(6)中生代岩浆岩在朝鲜半岛广泛存在,三叠纪岩浆作用可能与印支期造山作用有关;侏罗纪和白垩纪的岩浆岩分布与华北在时代和空间分布上有所差别,晚白垩世岩浆岩在朝鲜半岛集中出露于庆尚盆地。本文还在最后一部分,提出了朝鲜半岛以及中朝对比研究中有争议的和尚需进一步研究的关键问题。  相似文献   

16.
四川阿坝——秀山地学断面   总被引:1,自引:2,他引:1  
四川省阿坝—秀山地学断面长约1000km,横跨上扬子地台和松潘-甘孜地槽褶皱系。在综合研究现有地质、地球物理资料的基础上,对断面及邻区划分出不同性质的三大岩石圈块体;结合表壳变形特征又区分出以四川地块为中心的东、西对冲构造体系;并进一步划分出8个次级构造带(块)。在垂向上划分出地壳、岩石圈厚度及形态,讨论了地壳次级分层及壳、幔低速层、低阻层和高阻层异常的特征,提出了初步解释。指出龙门山断裂带西部地壳缩短、增厚的主要因素。概述了地壳演化。  相似文献   

17.
利用MT资料研究位于佳木斯地块和兴凯地块之间过渡地带的岩石圈结构特征。由资料处理所得到的2D反演结果分析出过渡带(属于完达山地体)的地电特征:上部地壳的地电参数在横向上变化较大,中下部地壳所存在的低阻层带可延伸至兴凯地块岩石圈地幔之中,是否在更深位置延伸至佳木斯地块岩石圈地幔还不能确定。两古老地块的高阻特征存在一定的差异,即佳木斯地块的阻值明显高于兴凯地块。即完达山地体的南部作为两古老地块之间的过渡带,可能发生过古大洋洋中脊软流圈物质的垂向对流(上涌),并发生岩石圈板片向两古地块的俯冲过程。  相似文献   

18.
The crustal-scale Kyonggi shear zone of central Korea has been identified as a major boundary between the Precambrian Kyonggi massif in the south and the Imjingang belt in the north. The latter is an eastward extension of the Qinling-Dabie-Sulu collisional belt of China. Field observations and microstructural analysis indicate that the extensional shear zone evolved from a deep crustal ductile regime to a shallow crustal brittle regime, associated with a rapid uplift of the Kyonggi massif following the Late Permian-Early Triassic collision between the Sino-Korean and Yangtze cratons. A Rb-Sr muscovite age (226+/-1.2 Ma) of the mylonite suggests that the extensional ductile shearing occurred during the Late Triassic.  相似文献   

19.
This paper reports the results of geological, geochronological, and isotope geochemical investigations of two premetamorphic granite massifs of the Goloustnaya block of the Baikal salient of the basement of the Siberian craton and granite gneisses from the migmatite–gneiss sequence of this block. The U–Pb zircon age of the granites of the Khomut massif is 2153 ± 11 Ma. The age of the Elovka massif was previously determined by us as 2018 ± 28 Ma. The Khomut and Elovka granites underwent structural and metamorphic transformations accompanied by migmatization. An age of 1.98–1.97 Ga was obtained for the structural and metamorphic processes in the Goloustnaya block from the analysis of margins of zircon grains from the Khomut granites and zircon from the granite gneisses. The biotite granites of the Khomut massif show transitional I–S-type geochemical characteristics, which allowed us to suggest that they were derived by melting of a crustal source of intermediate–acid composition. The Khomut granites show positive εNd(T) values from +2.0 to +2.2 and a Nd model age of 2.4 Ga, which may indicate their formation owing to the reworking of the Paleoproterozoic juvenile continental crust. The combined isotope geochemical data are consistent with collision of island arcs as a possible environment for the formation of the Khomut granites. The formation of these granites was not related to the development of the structure of the Siberian craton, similar to a few other anorogenic magmatic complexes of the margin of the Chara–Olekma terrane of the Aldan shield with ages of ~2.2–2.1 Ga, including the granites of the Katugin complex. The biotite–amphibole granites of the Elovka massif with an age of ~2.02 Ga are geochemically similar to I-type granites. The geochemical characteristics of these granites, including elevated Sr and Ba and low Nb and Ta contents, were inherited from a subduction-related source. Negative εNd(T) values from–0.9 to–1.8 and rather high contents of K2O and Th allow us to suppose a metamagmatic crustal source for the granites of the Elovka massif. The combined isotope geochemical characteristics of the Elovka granites suggest that a mature island arc or an active continental margin is the most probable environment of their formation. The estimates of the age of structural and metamorphic processes affecting the Goloustnaya block (1.98–1.97 Ga) coinciding with the time of similar transformations in the central part of the Aldan shield and eastern Anabar shield (1.99–1.96 Ga) indicate wide occurrence of collisional events of similar age in the Siberian craton and allow us to consider this age interval as an early large-scale stage of the formaiton of the structure of the Siberian craton.  相似文献   

20.
作为理解华南构造演化的关键地区,在华南板块南缘的云开地体和越北的Song Chay地体发育了早中生代的向北东逆冲推覆的韧性变形.在云开地体,经历角闪岩相和绿片岩相变质的矿物指示了产状平缓的面理上发育明显的北东-南西向矿物拉伸线理.沿着这些矿物拉伸线理,具有上部指向北东的剪切变形.同位素年代学的定年结果指示了变形事件发生...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号