首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Abstract— We have measured the 13C/12C and 14C/12C ratios in CO2 released by acid etching of the carbonate-bearing SNC meteorites Allan Hills 84001 and Nakhla. Most of the C released is strongly enriched in 13C. In 10 out of 12 samples, 15‰ <δ13C < 55‰. Terrestrial values of carbonateδ13C from weathering products are generally between ?10 and +10‰. Two leachate samples especially rich in 13C, ALH 84001,27 and Nakhla 25, have elemental Si/Mg ratios much lower than those of the bulk meteorites and 14C activities that are much lower than the values expected for terrestrial carbonates. The former observation indicates that these leachates consist primarily of carbonates and, less likely, phosphates. The latter observation implies that heavy C was introduced not by terrestrial weathering but by extraterrestrial processes. For ALH 84001,121 (sample 27) and Nakhla (BM 1913,26) δ13C = +41‰ and +35‰, respectively. The measured 18O/16O ratios in the leaches are similar: δ18O ~ 15 ± 5‰, contrasting with 4.2‰ in the bulk silicates. We infer that the C in the carbonates retains an extraterrestrial isotopic signature, but probably not O, due to its ease of isotopic exchange (Cole and Ohmoto, 1986).  相似文献   

2.
Precise triple oxygen isotope compositions of 32 Allende bulk chondrules (ABCs) are determined using laser‐assisted fluorination mass spectrometry. Various chemically characterized chondrule types show ranges in δ18O that vary from ?4.80‰ to +1.10‰ (porphyritic olivine; PO, N = 15), ?3.10‰ to +1.50‰ (porphyritic olivine pyroxene; POP, N = 9), ?3.40‰ to +2.60‰ (barred olivine; BO, N = 4), and ?3.60‰ to +1.30‰ (porphyritic pyroxene; PP, N = 3). Oxygen isotope data of these chondrules yield a regression line referred to as the Allende bulk chondrule line (ABC line, slope = 0.86 ± 0.02). Most of our data fall closer to the primitive chondrule minerals line (PCM line, slope = 0.987 ± 0.013) and the carbonaceous chondrite anhydrous mineral line (CCAM line, slope = 0.94 ± 0.02) than the Allende anhydrous mineral line (AAML, slope = 1.00 ± 0.01) with a maximum δ18O value (+2.60‰) observed in a BO chondrule and a minimum δ18O value (?4.80‰) shown by a PO chondrule. Similarly, these chondrules depict variable ?17O values that range from ?5.65‰ to ?3.25‰ (PO), ?4.60‰ to ?2.80‰ (POP), ?4.95‰ to ?3.00‰ (BO), ?5.30‰ to ?3.20‰ (PP), and ?4.90‰ (CC). A simple model is proposed for the Allende CV3 chondrite with reference to the AAML and PCM line to illustrate the isotopic variations occurred due to the aqueous alteration processes. The estimated temperature ranging from 10 to 130 °C (mean ~60 °C) implies that the secondary mineralization in Allende happened in a warmer and relatively dry environment compared to Murchison. We further propose that thermal metamorphism could have dehydrated the Allende matrix at temperatures between >150 °C and <600 °C.  相似文献   

3.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

4.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

5.
Abstract— A new insight into carbon and hydrogen isotope variations of insoluble organic matter (IOM) is provided from seven CM chondrites, including Murchison and six Antarctic meteorites (Y‐791198, Y‐793321, A‐881280, A‐881334, A‐881458 and B‐7904) as well as Murchison IOM residues after hydrous pyrolysis at 270–330 °C for 72 h. Isotopic compositions of bulk carbon (δ13Cbulk) and hydrogen (δD) of the seven IOMs vary widely, ranging from ?15.1 to ?7.6%0 and +133 to +986%0, respectively. Intramolecular carboxyl carbon (δ13CCOOH) is more enriched in 13C by 7.5. 11%0 than bulk carbon. After hydrous pyrolysis of Murchison IOM at 330 °C, H/C ratio, δ13Cbulk, δ13CCOOH, and δD values decrease by up to 0.31, 3.5%0, 5.5%0, and 961%0, respectively. The O/C ratio increases from 0.22 to 0.46 at 270 °C and to 0.25 at 300 °C, and decreases to 0.10 at 330 °C. δ13Cbulk‐δD cross plot of Murchison IOM and its pyrolysis residues shows an isotopic sequence. Of the six Antarctic IOMs, A‐881280, A‐881458, Y‐791198 and B‐7904 lie on or near the isotopic sequence depending on the degree of hydrous and/or thermal alteration, while A‐881334 and Y‐793321 consist of another distinct isotope group. A δ13Cbulk‐δ13CCOOH cross‐plot of IOMs, including Murchison pyrolysis residues, has a positive correlation between them, implying that the oxidation process to produce carboxyls is similar among all IOMs. These isotope distributions reflect various degree of alteration on the meteorite parent bodies and/or difference in original isotopic compositions before the parent body processes.  相似文献   

6.
We report the mineralogy and texture of magnetite grains, a magnetite‐dolomite assemblage, and the adjacent mineral phases in five hydrated fine‐grained Antarctic micrometeorites (H‐FgMMs). Additionally, we measured the oxygen isotopic composition of magnetite grains and a magnetite‐dolomite assemblage in these samples. Our mineralogical study shows that the secondary phases identified in H‐FgMMs have similar textures and chemical compositions to those described previously in other primitive solar system materials, such as carbonaceous chondrites. However, the oxygen isotopic compositions of magnetite in H‐FgMMs span a range of ?17O values from +1.3‰ to +4.2‰, which is intermediate between magnetites measured in carbonaceous and ordinary chondrites (CCs and OCs). The δ18O values of magnetites in one H‐FgMM have a ~27‰ mass‐dependent spread in a single 100 × 200 μm particle, indicating that there was a localized control of the fluid composition, probably due to a low water‐to‐rock mass ratio. The ?17O values of magnetite indicate that H‐FgMMs sampled a different aqueous fluid than ordinary and carbonaceous chondrites, implying that the source of H‐FgMMs is probably distinct from the asteroidal source of CCs and OCs. Additionally, we analyzed the oxygen isotopic composition of a magnetite‐dolomite assemblage in one of the H‐FgMMs (sample 03‐36‐46) to investigate the temperature at which these minerals coprecipitated. We have used the oxygen isotope fractionation between the coexisting magnetite and dolomite to infer a precipitation temperature between 160 and 280 °C for this sample. This alteration temperature is ~100–200 °C warmer than that determined from a calcite‐magnetite assemblage from the CR2 chondrite Al Rais, but similar to the estimated temperature of aqueous alteration for unequilibrated OCs, CIs, and CMs. This suggests that the sample 03‐36‐46 could come from a parent body that was large enough to attain temperatures as high as the OCs, CIs, and CMs, which implies an asteroidal origin for this particular H‐FgMM.  相似文献   

7.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   

8.
Oxygen isotope and chemical measurements were carried out on 25 samples of Libyan Desert Glass (LDG), 21 samples of sandstone, and 3 of sand from the same area. The δ18O of LDG samples range from 9.0‰ to 11.9‰ (Vienna Standard Mean Ocean Water [VSMOW]); some correlations between isotope data and typological features of the LDG samples are pointed out. The initial δ18O of a bulk parent material may be slightly increased by fusion due to the loss of isotopically light pore water with no isotope exchange with oxygen containing minerals. Accordingly, the δ18O of the bulk parent material of LDG may have been about 9.0 ± 1‰ (VSMOW). The measured bulk sandstone and sand samples have δ18O values ranging from 12.6‰ to 19.5‰ and are consequently ruled out as parent materials, matching the results of previous studies. However, separated quartz fractions have δ18O values compatible with the LDG values suggesting that the modern surface sand inherited quartz from the target material. This hypothesis fits previous findings of lechatelierite and baddeleyite in these materials. As the age of the parent material reported in previous studies is Pan‐African, we measured the δ18O values of bulk rock and quartz from intrusives of Pan‐African age and the results obtained were compatible with the LDG values. The main element abundances (Fe, Mg, Ca, K, Na) in our LDG samples conform to previous estimates; Fe, Mg, and K tend to be higher in heterogeneous samples with dark layers. The hypothesis of a low‐altitude airburst involving silica‐rich surface materials deriving from weathered intrusives of Pan‐African age, partially melted and blown over a huge surface by supersonic winds matches the results obtained.  相似文献   

9.
The Northwest Africa (NWA) 090 meteorite, initially classified as an acapulcoite, presents petrological, chemical, and isotopic characteristics comparable to a group of seven primitive winonaites: Dhofar 1222, NWA 725, NWA 1052, NWA 1054, NWA 1058, NWA 1463, and NWA 8614. Five of these samples were previously classified as acapulcoites or ungrouped achondrites before being reclassified as winonaites based on their oxygen isotopic compositions. These misclassifications are indicative of the particular compositional nature of these primitive achondrites. All contain relict chondrules and a lower closure temperature of metamorphism of 820 ± 20 °C compared to other typical winonaites, as well as mineral elemental compositions similar to those of acapulcoites. The oxygen isotopic signature of these samples, δ17O of 1.18 ± 0.17‰, δ18O of 3.18 ± 0.30‰, and Δ17O of −0.47 ± 0.02, is in fact resolvable from both acapulcoites and winonaites. We investigate the relationship between these eight primitive achondrites, typical winonaites, and acapulcoites, to redefine petrological, mineralogical, and geochemical criteria of primitive achondrite classification. Distinguishing between winonaites, acapulcoites, and this group of eight primitive achondrites can be unambiguously done using a combination of several mineralogical and chemical criteria. A combination of olivine fayalite content and FeO/MnO ratio, as well as plagioclase potassium content allow us to separate these three groups without the absolute necessity of oxygen isotope analyses. NWA 090 as well as the other seven primitive achondrites, although related to winonaites, are most likely derived from a parent body distinct from winonaites and acapulcoites–lodranites, and define a new group of primitive achondrites that can be referred to as tissemouminites.  相似文献   

10.
We have conducted hydration–dehydration experiments on terrestrial olivine to investigate the behavior of oxygen isotopic fractionation to test the hypothesis that multiple cycles of aqueous and thermal processing on a parent asteroid comprise a genetic relationship between CM2s and metamorphosed carbonaceous chondrites (MCCs). Two experiments were undertaken. In the first experiment, serpentine was obtained by hydrating terrestrial olivine (Fo90.9) in the laboratory. During this experiment, olivine was reacted with isotopically heavy water (δ18O 21.5‰) at T = 300 °C,  = 300 bar, for 100 days. The oxygen isotopic composition of the experimental serpentine was enriched in 18O (by 10 ‰ in δ18O) due to exchange of oxygen isotopes between olivine and the 18O‐rich water. Dehydrated serpentine was then produced during laboratory heating experiment in vacuum, at T = 930 °C, for 1 h. The oxygen isotopic composition of the dehydrated serpentine was enriched in 18O by a further 7 ‰. The net result of the hydration–dehydration process was an enrichment of 18O in the final material by approximately 17‰. The new experimental results suggest that the oxygen isotopic compositions of MCCs of the Belgica‐like group, including Dhofar 225 and Dhofar 725, could be derived from those of typical CM2 chondrites via several cycles of hydration–dehydration caused by aqueous alteration and subsequent thermal metamorphism within their parent asteroids.  相似文献   

11.
Abstract— We report nitrogen isotopic data obtained from a stepwise gas release of two grain-size fractions of the gas-rich meteorite Pesyanoe. Cosmic-ray-produced 15Nc may be present in all temperature steps ≥600 °C, and we correct this component using spallation 21Ne data. The resulting ratios reveal the presence of more than one trapped N component. Indigenous N is released above 1000 °C with an isotopic signature of δ15N = ?33‰. This is consistent with the rather uniform signatures of indigenous nitrogen in enstatite meteorites. There is no evidence for the presence of “very light” N of δ15N ? ?200‰. On the other hand, a “heavy” nitrogen component appears in the temperature range 700–800 °C, and coincides with a major release of solar-type noble gases. For a two-component mixture, the isotopic shifts in this temperature range define a lower limit δ15Ncorr = ?6‰ for the second component (e.g., solar-type nitrogen). However, for the case of a solar-type component, the calculated δ15N signature depends on the adopted elemental abundances. For example, adoption of the relative abundances of 14N and noble gases in lunar ilmenite 71501 yields δ15N ? +170, which is in the range of the heavier nitrogen signatures observed on the lunar surface.  相似文献   

12.
Abstract— Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the origin of these compounds could not be firmly established. Here, we present the stable carbon isotopic ratios of glycine and ε‐amino‐n‐caproic acid (EACA), the two most abundant amino acids identified in Stardust‐returned foil samples measured by gas chromatography‐mass spectrometry coupled with isotope ratio mass spectrometry. The δ13C value for glycine of +29 ± 6‰ strongly suggests an extraterrestrial origin for glycine, while the δ13C value for EACA of ?25 ± 2‰ indicates terrestrial contamination by Nylon‐6 during curation. This represents the first detection of a cometary amino acid.  相似文献   

13.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

14.
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes.  相似文献   

15.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

16.
Angrites are a small group of ancient basaltic achondrites, notable for their unusual chemistry and extreme volatile depletion. No comprehensive study of indigenous light elements currently exists for the group. Measurement of the abundances and isotopic composition of carbon and nitrogen could provide information pertaining to the evolution of the angrite parent body. Bulk‐sample stepped combustion analyses of five angrites and a glass separate from D'Orbigny were combined with earlier data and acid dissolution experiments of carbonates found in D'Orbigny to compile an inventory of indigenous carbon and nitrogen. Indigenous carbon combusted between 700 °C and 1200 °C, with abundances of 10–140 ppm and a mass‐weighted δ13C of ?25 to ?20‰ with the exception of D'Orbigny (δ13C approximately ?5‰). Nitrogen was released at 850–1200 ºC, 1–20 ppm with a δ15N ?3‰ to +4‰; again, D'Orbigny (δ15N approximately +20 to +25‰) was an exception. We interpret these components as largely indigenous and decoupled; the carbon in graphitic or amorphous form, while the nitrogen is present as a dissolved component in the silicates. No relationship with the textural sub‐classification of angrites is apparent. We suggest that the angrite parent body contains a reservoir of reduced carbon and thus may have undergone a change in redox conditions, although the timing and mechanism for this remain unclear.  相似文献   

17.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

18.
As part of an integrated consortium study, we have undertaken O, Cd, Cr, Si, Te, Ti, and Zn whole rock isotopic measurements of the Winchcombe CM2 meteorite. δ66Zn values determined for two Winchcombe aliquots are +0.29 ± 0.05‰ (2SD) and +0.45 ± 0.05‰ (2SD). The difference between these analyses likely reflects sample heterogeneity. Zn isotope compositions for Winchcombe show excellent agreement with published CM2 data. δ114Cd for a single Winchcombe aliquot is +0.29 ± 0.04‰ (2SD), which is close to a previous result for Murchison. δ130Te values for three aliquots gave indistinguishable results, with a mean value of +0.62 ± 0.01‰ (2SD) and are essentially identical to published values for CM2s. ε53Cr and ε54Cr for Winchcombe are 0.319 ± 0.029 (2SE) and 0.775 ± 0.067 (2SE), respectively. Based on its Cr isotopic composition, Winchcombe plots close to other CM2 chondrites. ε50Ti and ε46Ti values for Winchcombe are 3.21 ± 0.09 (2SE) and 0.46 ± 0.08 (2SE), respectively, and are in line with recently published data for CM2s. The δ30Si composition of Winchcombe is −0.50 ± 0.06‰ (2SD, n = 11) and is essentially indistinguishable from measurements obtained on other CM2 chondrites. In conformity with petrographic observations, oxygen isotope analyses of both bulk and micromilled fractions from Winchcombe clearly demonstrate that its parent body experienced extensive aqueous alteration. The style of alteration exhibited by Winchcombe is consistent with relatively closed system processes. Analysis of different fractions within Winchcombe broadly support the view that, while different lithologies within an individual CM2 meteorite can be highly variable, each meteorite is characterized by a predominant alteration type. Mixing of different lithologies within a regolith environment to form cataclastic matrix is supported by oxygen isotope analysis of micromilled fractions from Winchcombe. Previously unpublished bulk oxygen isotope data for 12 CM2 chondrites, when combined with published data, define a well-constrained regression line with a slope of 0.77. Winchcombe analyses define a more limited linear trend at the isotopically heavy, more aqueously altered, end of the slope 0.77 CM2 array. The CM2 slope 0.77 array intersects the oxygen isotope field of CO3 falls, indicating that the unaltered precursor material to the CMs was essentially identical in oxygen isotope composition to the CO3 falls. Our data are consistent with earlier suggestions that the main differences between the CO3s and CM2s reflect differing amounts of water ice that co-accreted into their respective parent bodies, being high in the case of CM2s and low in the case of CO3s. The small difference in Si isotope compositions between the CM and CO meteorites can be explained by different proportions of matrix versus refractory silicates. CMs and COs may also be indistinguishable with respect to Ti and Cr isotopes; however, further analysis is required to test this possibility. The close relationship between CO3 and CM2 chondrites revealed by our data supports the emerging view that the snow line within protoplanetary disks marks an important zone of planetesimal accretion.  相似文献   

19.
Abstract— Isotopic variations have been reported for many elements in iron meteorites, with distinct N signatures found in the metal and graphite of IAB irons. In this study, a dozen IAB/IIICD iron meteorites (see Table 1 for new classifications) were analyzed by stepwise pyrolysis to resolve nitrogen components. Although isotopic heterogeneity has been presumed to be lost in thermally processed parent objects, the high‐resolution nitrogen isotopic data indicate otherwise. At least one reservoir has a light nitrogen signature, δ15N = ?(74 ± 2)‰, at 900 °C to 1000 °C, with a possible second, even lighter, reservoir in Copiapo (δ15N ≤ ?82‰). These releases are consistent with metal nitride decomposition or low‐temperature metal phase changes. Heavier nitrogen reservoirs are observed in steps ≤700 °C and at 1200 °C to 1400 °C. The latter release has a δ15N signature with a limit of ≥?16‰. Xenon isotopic signatures are sensitive indicators for the presence of inclusions because of the very low abundances of Xe in metal. The combined high‐temperature release shows 131Xe and 129Xe excesses to be consistent with shifts expected for Te(n,γ) reaction in troilite by epithermal neutrons, but there are also possible alterations in the isotopic ratios likely due to extinct 129I and cosmic‐ray spallation. The IAB/IIICD iron data imply that at least one light N component survived the formation processes of iron parent objects which only partially exchanged nitrogen between phases. Preservation of separate N reservoirs conflicts with neither the model of impact‐heating effects for these meteorites nor reported age differences between metal and silicates.  相似文献   

20.
NASA's Genesis mission revealed that the Sun is enriched in 16O compared to the Earth and Mars (the Sun's Δ17O, defined as δ17O–0.52×δ18O, is –28.4 ± 3.6‰; McKeegan et al. 2011). Materials as 16O‐rich as the Sun are extremely rare in the meteorite record. Here, we describe a Ca‐Al‐rich inclusion (CAI) from a CM chondrite that is as 16O‐enriched as the Sun (Δ17O = –29.1 ± 0.7‰). This CAI also has large nucleosynthetic anomalies in 48Ca and 50Ti (δ‐values are –8.1 ± 3.3 and –11.7 ± 2.4‰, respectively) and shows no clear evidence for incorporation of live 26Al; (26Al/27Al)0 = (0.03 ± 0.11) × 10–5. Due to their anomalous isotopic characteristics, the rare CAIs consistent with the Genesis value could be among the first materials that formed in the solar system. In contrast to the CAI studied here, the majority of CAIs formed in or interacted with a reservoir characterized by a Δ17O value near –23.5‰. Combined with 26Al‐26Mg systematics, the oxygen isotopic compositions of FUN (fractionation and unidentified nuclear effects), UN, and normal CAIs suggest that nebular conditions were favorable for solids to inherit this value for an extended period of time. Many later‐formed materials, such as chondrules, planetesimals, and terrestrial planets, formed in reservoirs with Δ17O near 0‰. The distribution could be easier to explain if the common CAI value of –23.5‰, which is consistent with the Genesis value within 3σ, represented the average composition of the protoplanetary disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号