首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three-dimensional unsteady free-convection flows of a viscous fluid near a porous infinite vertical plate in a rotating medium in the presence of a constant transverse magnetic field are investigated under an arbitrary time-dependent heating of the plate. By using the Laplace transform technique, the Green function of the problem is determined and exact solutions are obtained for special cases of the impulsive and the accelerated heating effect for an arbitrary Prandtl number. The thermal influence on skin friction at the plate and the displacement thickness of the boundary layers are discussed.  相似文献   

2.
The three-dimensional flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is studied in a rotating fluid. The flow is assumed to be at small magnetic Reynolds number so that the induced magnetic field is neglected. An exact solution has been obtained by defining a complex velocity with the help of the Laplace transform method for the Prandtl number equal to unity. The effects of rotation, magnetic and free-convection parameters are discussed for the whole problem. Also, the skin-friction components on the plate are discussed.  相似文献   

3.
The effect of a uniform transverse magnetic field on the free-convection and mass-transform flow of an electrically-conducting fluid past an infinite vertical plate for uniformly accelerated motion of the plate through a porous medium is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expression for the velocity field and skin-friction are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

4.
The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible and electricalfy conducting fluid has been presented in a rotating system. The magnetic Reynolds number is assumed small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex variable with the help of the Laplace transform technique. The influence of the various parameters, occurring into the problem, on the axial and transverse components of the velocity and skin-friction is extensively discussed with the help of graphs and table.  相似文献   

5.
In this work we present the effects of temperature-dependent heat source on hydromagnetic free-convection flow (set up due to temperature as well as species concentration) of an electrically-conducting incompressible viscous fluid past a steady moving vertical porous plate through high porous medium when the free stream oscillates in magnitude. The flow is subjected to a constant suction through the porous plate. As the mean steady flow has been presented gy Gholizadeh (1990), only the solution for the transient velocity profiles, transient temperature profiles, the skin-friction (steady+unsteady), and rate of heat transfer are presented in this work.  相似文献   

6.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically-conducting fluid past an infinite, vertical, porous plate for both classes of impulsive as well as uniformly-accelerated motion of the plate is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expressions for the velocity field and skin friction for both cases are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed with the help of graphs and tables.  相似文献   

7.
The effect of Hall currents on the hydromagnetic free-convection flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is discussed. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex velocity with the help of the Laplace transform method when the Prandtl number is equal to unity. The influence of the various parameters on the unsteady flow field is presented for both the cases, cooling and heating of the porous plate by free-convection currents.  相似文献   

8.
The unsteady free-convection flow of an electrically-conducting fluid near an oscillating vertical plate of infinite extent, is studied in the presence of a uniform transverse magnetic field. Exact solutions for velocity, temperature and skin friction are obtained with the aid of the Laplace transform method, when the plate is oscillating harmonically in its own plane. The influence of various parameters, entering into the problem, is discussed for the velocity field and skin-friction.  相似文献   

9.
Hall effects on the MHD flow of an incompressible, electrically-conducting viscous fluid past an impulsively started infinite vertical porous plate has been analysed for the case of small magnetic Reynolds number. Exact solutions have been obtained for the axial and the transverse components of the velocity and the skin-friction by defining a complex velocity with the help of the Laplace transform technique. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin-friction are tabulated for different values of the dimensionless parameters occurring into the problem.  相似文献   

10.
An analytical study is performed to examine the heat source characteristics on the free-convection and mass transfer flow past an impulsively started infinite non-conducting vertical plate of a viscous, incompressible electrically-conducting fluid under the action of a uniform magnetic field through porous medium. The effects of various parameters on the velocity field are extensively discussed.  相似文献   

11.
The two-dimensional unsteady free-convective flow through a porous medium bounded by an infinite vertical plate for an incompressible viscous and electrically conducting fluid is considered, when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The effects of Hall currents on the flows are studied for various values of .  相似文献   

12.
An analysis of Hall currents and heat generation on the free-convection flow resulting from the combined effects of thermal and mass diffusion is considered. Analytical expressions for the transient velocity and transient temperature field are derived. The influence of the different parameters entering into the problem are discussed by graphs.  相似文献   

13.
The flow past an infinite vertical isothermal plate started impulsively in its own plane in a viscous incompressible and electrically conducting fluid has been considered. The magnetic Reynolds number is assumed small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by finite-difference method when the Prandtl number is not equal to unity. The influence of the various parameters, entering into the problem, on the velocity field, the temperature field and on their related quantities is extensively discussed with the help of graphs and tables.  相似文献   

14.
We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite length. We assume that the density obeys the simple Boussinesq equation of state while the viscosity and thermal conductivity vary with temperature, that is a compressible fluid. If the temperature of the plate is such that a time-dependent component is superimposed on a constant value, the problem is tackled by asymptotic approximation. The results are compared and contrasted with those of incompressible flow.  相似文献   

15.
We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first-order solutions are deduced for an impulsive motion.  相似文献   

16.
The three-dimensional free-convection flow near an infinite vertical plate moving in a rotating fluid in the presence of a transverse magnetic field is studied in the case when the plate temperature undergoes a thermal transient. An exact solution has been obtained by defining a complex velocity with the help of the Laplace-transform technique, when the plate is moving with a velocity which is an arbitrary function of time. Three special cases of physical interest are also discussed.  相似文献   

17.
The interaction of free convection with thermal radiation of the oscillatory flow past a vertical plate is studied. The Rosseland approximation is used to describe the radiative heat flux in the energy equation.  相似文献   

18.
Effects of temperature-dependent heat source on hydromagnetic free-convection flow (set up due to temperature as well as species concentration) of an electrically-conducting incompressible viscous fluid past a steadily moving vertical porous plate through high porous medium has been analysed when the free stream oscillates in magnitude. The flow is subjected to a constant suction, through the porous plate. The mathematical analysis is presented for the hydromagnetic flow without taking into account the induced magnetic field. This is a valid assumption for small magnemtic Reynold number. Approximate analysis for the velocity and temperature field and their related quantities are obtained. The influence of various parameters entering into the problem is extensively discussed with the help of graphs and tables.  相似文献   

19.
Unsteady two-dimensional hydromagnetic flow of an electrically conducting viscous incompressible fluid past a semi-infinite porous flat plate with step function change in suction velocity is studied allowing a first order velocity slip at the boundary condition. The solution of the problem is obtained in closed form and the results are discussed with the aid of graphs for various parameters entering in the problem.Notations B intensity of magnetic field - H magnetic field parameter,H=(M+1/4)1/2–1/2 - h rarefaction parameter - L 1 slip coefficient; ;I, mean free path of gas molecules;f, Maxwell's reflection coefficient - M magnetic field parameter - r suction parameter - t time - t dimensionless time - u velocity of the fluid - u dimensionless velocity of the fluid - U velocity of the fluid at infinity - v suction velocity - v 1 suction velocity att<=0 - v 2 suction velocity att>0 - x distance parallel to the plate - y distance normal to the plate - y nondimensional distance normal to the plate - v kinematic viscosity - electric conductivity of the fluid - density of the fluid - shear stress at the wall - nondimensional shear stress at the wall - erf error function - erfc complementary error function  相似文献   

20.
The unsteady flow of an electrically conducting fluid past an infinite plate with constant suction is investigated in the presence of an external magnetic field and buoyancy forces. The temperature of the plate is assumed to oscillate in time about a constant mean and the flow is considered to be free of convection. For the method of solution, we have employed a small parameter approach when this small parameter is a non-dimensional quantity which is related to the viscoelastic constant of the fluid. Analytical expressions are obtained for the temperature distribution and the velocity profile of the fluid. These analytical results clearly show that the velocity profile is strongly damped when the magnetic field is more intense. This means that the applied magnetic field causes the fluid to move slower as compared with the non-magnetic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号