首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new semi-empirical method is proposed to establish the soil-specific CRR–Vs1 correlation. To validate the proposed method, a number of undrained cyclic triaxial tests along with bender element tests were performed on two types of sands. Similar experimental data for six other types of sands reported in the literature was also compiled. Applying the proposed method, soil-specific CRR–Vs1 correlation curves were developed for these eight types of sands. It is shown that the correlation is not unique for different types of sands and the boundary curve proposed in the available simplified method can only be used as an initial estimation of liquefaction resistance. Finally, using the results of this study as well as previous ones, a chart is suggested to be used in engineering practice showing the conditions for which a detailed soil-specific CRR–Vs1 correlation study needs to be performed.  相似文献   

2.
Gravelly soil is generally recognized to have no liquefaction potential. However, liquefaction cases were reported in central Taiwan in the 1999 Chi-Chi Taiwan earthquake and in the 1988 Armenia earthquake. Thus, further studies on the liquefaction potential of gravelly soil are warranted. Because large particles can impede the penetration of both standard penetration test and cone penetration test, shear wave velocity-based correlations and large hammer penetration tests (LPT) are employed to evaluate the liquefaction resistance of gravelly soils. A liquefied gravelly deposit site during the Chi-Chi earthquake was selected for this research. In situ physical properties of soil deposits were collected from exploratory trenches. Instrumented LPT and shear wave velocity (Vs) measurements were performed to evaluate the liquefaction resistance. In addition, large-scale cyclic triaxial tests on remolded gravelly soil samples (15 cm in diameter, 30 cm in height) were conducted to verify and improve LPT-based and Vs-based correlations. The results show that the LPT and shear wave velocity methods are reasonably suitable for liquefaction assessment of gravelly soils.  相似文献   

3.
Based on the liquefaction performance of sites with seismic activity, the normalized shear wave velocity, Vs1, has been proposed as a field parameter for liquefaction prediction. Because shear wave velocity, Vs, can be measured in the field with less effort and difficulty than other field tests, its use by practitioners is highly attractive. However, considering that its measurement is associated with small strain levels, of the order of 10−4–10−3%, Vs reflects the elastic stiffness of a granular material, hence, it is mainly affected by soil type, confining pressure and soil density, but it is insensitive to factors such as overconsolidation and pre-shaking, which have a strong influence on the liquefaction resistance. Therefore, without taking account of the important factors mentioned above, the correlation between shear wave velocity and liquefaction resistance is weak.In this paper, laboratory test results are presented in order to demonstrate the significant way in which OCR (overconsolidation ratio) affects both shear wave velocity and liquefaction resistance. While Vs is insensitive to OCR, the liquefaction resistance increases significantly with OCR. In addition, the experimental results also confirm that Vs correlates linearly with void ratio, regardless of the maximum and minimum void ratios, which means that Vs is unable to give information about the relative density. Therefore, if shear wave velocity is used to predict liquefaction potential, it is recommended that the limitations presented in this paper be taken into account.  相似文献   

4.
Correlation of cyclic preloading with the liquefaction resistance   总被引:1,自引:0,他引:1  
The compactivity of sand due to cyclic loading with a high number (N>103) of small cycles (εampl≤10−3) cannot be described by void ratio and stress alone. It depends strongly on the soil fabric usually described as ‘cyclic preloading’. The cyclic preloading cannot be measured directly in situ but correlates well with the liquefaction resistance. This paper demonstrates this correlation on the basis of laboratory tests. Practical applications can be derived from this work.  相似文献   

5.
The uphole method is a field seismic test which uses receivers on the ground surface and an underground source. A modified form of the uphole method is introduced in order to obtain efficiently the shear wave velocity (VS) profile of a site. This method is called the standard penetration test (SPT)-uphole method because it uses the impact energy of the split spoon sampler in the SPT test as a source. Since the SPT-uphole method can be performed simultaneously with the SPT test it is economical and not labor intensive compared to the original uphole methods which use small explosives or a mechanical source. Field testing and interpretation procedures for the proposed method are described. To obtain reliable travel time information of the shear wave, the first peak point of the shear wave using two component geophones is recommended. Through a numerical study using the finite element method (FEM), the procedure of the proposed method was verified. Finally, the SPT-uphole method was performed at several sites, and the field applicability of the proposed method was verified by comparing the VS profiles determined by the SPT-uphole method with the profiles determined by the downhole, the spectral analysis of surfaces waves (SASW) method and from the SPT-N values.  相似文献   

6.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

7.
Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT   总被引:1,自引:0,他引:1  
During the 1999 Chi-Chi, Taiwan earthquake, many sand boiling phenomena were observed in central Taiwan, which caused severe ground settlement and structure damages. According to the installed accelerograms, the peak ground surface horizontal accelerations in the liquefaction-affected areas range from 774.42 to 121.3 gal. The writers carried out an extensive investigation of soil liquefaction in this earthquake. In this paper, we present results of the CPT exploration and post-earthquake liquefaction analysis. Two hundred and seventy five (275) cone penetration test data were collected from the liquefaction-affected areas, and 46 liquefaction case histories and 88 non-liquefaction case histories were derived that can be used to evaluate the accuracy of existing liquefaction evaluation models. In addition, the strength of the liquefied soils after earthquake and the implication of its liquefaction potential in the future event are discussed.  相似文献   

8.
The Seismic Cone Penetration Test (SCPT) is used to determine the variation with depth of the shear (and longitudinal) wave velocity at various sites in Belgium. The cross correlation technique together with a posteriori increase of the sampling frequency proves to be a reliable method to determine wave velocities by the SCPT. Additionally, the Spectral Ratio Slope (SRS) method is applied to Fourier transforms of the measured response to determine the variation of the material damping ratio with depth. This method is applied to synthetic signals computed for three different soil profiles with known characteristics and to the horizontal acceleration time histories that have been measured during SCPT on two sites. The influence of some signal processing techniques commonly applied in the SRS method is studied. A remarkable influence of the window length, applied on the predicted signals, on the computed material damping ratio is found, especially its scattering. It is therefore concluded that the use of a window function should be avoided wherever possible. On one of the two test sites, results of Resonant Column Tests and Free Torsion Pendulum Tests on undisturbed soil samples have been used to evaluate the values of the shear wave velocity and the material damping ratio as obtained in the in situ test.  相似文献   

9.
华北地区深部地幔剪切波速度结构研究   总被引:12,自引:1,他引:12  
本文分析了华北地区近50个台站下方800 km深度内的剪切波速度结构.结果发现华北地区不同构造单元之间速度结构差异很大,稳定地块速度随深度稳定增加,构造带内速度结构复杂,而且即使在同一构造单元内,不同区段之间速度结构也明显不同,如太行山构造带,反映了不同构造单元或各区段经历了各自不同的地质演化历史.环渤海地区及相关区域多个台站的速度结构显示,华北东部地区地幔软流层埋深浅、厚度大、速度低,反映了地幔上涌的特点;而在软流层或更深层次的地幔中没有发现埋深或厚度比较统一的高速或低速体,因此可能没有岩石圈或下地壳介质曾经拆沉进入地幔,这为东部岩石圈减薄的动力学机制提供了一定的深部地球物理约束.  相似文献   

10.
According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of G max (kPa) with (σd/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (e min). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests. Foundation item: State Natural Science Foundation (59678020) and Natural Science Foundation of Zhejiang Province (RC9609).  相似文献   

11.
Pre-shear history has been shown to be a critical factor in the liquefaction resistance of sand. By contrast to prior experimental studies in which triaxial shear tests were used to examine the effects of pre-shear on the liquefaction resistance of sand, hollow cylinder torsional shear tests were used in this study to avoid the influence of the inherent anisotropy that is inevitably produced during the sample preparation process because of gravitational deposition. A series of cyclic undrained shear tests were performed on sand samples that had experienced medium to large pre-shear loading. The test results showed that the liquefaction resistance of sand can be greatly reduced by its pre-shear history, and a pre-shear strain within the range from 0.1% to 5% can cause sand to be more prone to liquefaction. During the cyclic shear tests, the samples that had experienced pre-shear loading exhibited different behaviors when cyclic shear loading started in different directions, i.e., the clockwise direction and the counterclockwise direction. If the cyclic loading started in the identical direction as the pre-shear loading, then the mean effective stress of the sand was almost unchanged during the first half of the loading cycle; if the cyclic loading started in the direction opposite to that of the pre-shear loading, then the mean effective stress decreased significantly during the first half of the loading cycle. However, this anisotropic behavior was only remarkable during the first loading cycle. From the second cycle onward, the speeds of the decrease in the mean effective stresses in the two types of shear tests became similar.  相似文献   

12.
Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. "The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.  相似文献   

13.

在电缆测井中,可以利用偶极声场中的弯曲波反演软地层的横波速度.然而,在随钻声波测井(LWD)中,钢制钻铤的存在使得井孔结构变得复杂,同时改变了井孔声场,弯曲波也变得难以测定.此外,弯曲波与钻铤波耦合在一起,使得地层横波速度的反演变得困难.本文计算分析了随钻声场的频散曲线和激发曲线,注意到了偶极舒尔特波在较宽频带内速度频散很弱,特别是在本文研究的软地层情况下,偶极舒尔特波速度在3至25 kHz的频率范围内几乎为一个常值,并且该值与地层横波速度存在一一对应关系.舒尔特波速度远小于其他模式波速度,与其他模式波在时域上易分离.相对于其他地层参数,舒尔特波对地层横波速度十分敏感.因此,它可以用来反演软地层的横波速度.

  相似文献   

14.
Seismic piezocone (SCPTu) data compiled from 86 sites in the greater Christchurch, New Zealand area are used to evaluate several existing empirical correlations for predicting shear wave velocity from cone penetration test (CPT) data. It is shown that all the considered prediction models are biased towards overestimation of the shear wave velocity of the Christchurch soil deposits, demonstrating the need for a Christchurch-specific shear wave velocity prediction model (McGann et al., 2014) [1]. It is hypothesized that the unique depositional environment of the considered soils and the potential loss of soil ageing effects brought about by the 2010–2011 Canterbury earthquake sequence are the primary source of the observed prediction bias.  相似文献   

15.
Dynamic properties of municipal solid waste (MSW) from two dump sites located at Delhi, India are evaluated from field and large scale laboratory tests. Shear wave velocity (Vs) profiles of MSW, measured at these two sites using surface wave techniques, are in range of Vs data reported for MSW landfills worldwide. Representative bulk MSW samples were collected from large test pits excavated at the two dump sites to determine the near surface unit weight. Large scale undrained cyclic triaxial (CTX) tests were conducted on reconstituted MSW specimens to investigate the effect of various parameters such as composition, confining pressure, number of loading cycles, loading frequency and saturation on the dynamic properties. Undrained CTX tests, conducted on the specimens with and without fibrous materials demonstrated the effect of fibrous waste constituents on the stiffness and damping behavior of MSW. Specimens consisting of fibrous waste constituents such as plastics and textiles exhibited significantly less modulus reduction compared to specimens with negligible amount of fibrous content. The modulus reduction (G/Gmax) and material damping ratio curves derived from the present study are in the range reported for MSW in the literature. The G/Gmax curves from present study are in good agreement with curves recommended for MSW at Tri-Cities landfill in USA and Tianziling landfill in China. Dynamic properties evaluated from the present study add to the growing database of the worldwide dataset and can be useful for evaluating the seismic stability and associated permanent deformations of the existing dumps in and around Delhi.  相似文献   

16.
Seismic velocity is important to migration of seismic data,interpretation of lithology and lithofacies as well asprediction of reservoir.The information of shear wave velocity is required to reduce the uncertainty for discrimi-nating lithology,identifying fluid type in porous material and calculating gas saturation in reservoir prediction.Based on Zoeppritz equations,a numeral and scanning method was proposed in this paper.Shear wave velocitycan be calculated with prestack converted wave data.The effects were demonstrated by inversion of theoreticaland real seismic data.  相似文献   

17.
郑现  赵翠萍  郑斯华 《地震学报》2019,41(2):194-206
本文模拟使用青藏高原东南缘区域台网及国家台网的170个宽频台站基于背景噪声、天然地震面波、P波接收函数反演时的实际数据,对青藏高原东南缘假定的初始模型进行恢复,通过计算初始模型台站下方纯路径频散、提取各台站对间的瑞雷波频散曲线、计算理论接收函数以及反演剪切波速度结构来测试使用不同单项数据与联合使用多种数据反演对初始模型的恢复程度。结果表明,同时使用接收函数、基于噪声经验格林函数的群速度、相速度频散以及基于天然地震面波的相速度频散联合反演的剪切波速度结构,充分利用了几种数据的分辨率优势,清晰地分辨出中下地壳及上地幔顶部的低速层。此外,本文也分析了实际数据处理中出现的计算误差、随机噪声干扰对计算结果稳定性的影响。结果显示:对于面波频散,加入1%的误差后,联合反演的结果仍可很好地反映低速层的形态,但是当误差提升至5%后,对最终结果则产生了一定程度的影响;而在接收函数中加入4%的随机噪声时,虽然地幔低速层的上界面和下界面会略微受到随机噪声的影响,但是低速层的深度范围和速度值均得到了较好的恢复。  相似文献   

18.
The objective of this study is to estimate the shear wave velocity of earth dam materials using the vibration generated from artificial blasting events, and to verify its applicability. In this study, near-field artificial blast testing and monitoring were carried out at the Seongdeok dam, Korea, as the first blasting tests to be carried out on an existing dam in Korea. Vibrations were induced by four different types of blasting, using various explosive charge weights and depths of blasting bore-holes. During the tests, acceleration time histories were measured at the rock outcrop adjacent to the point of the explosion, and at the crest of the dam. The fundamental frequency of the target dam was computed from the frequency analysis of measured acceleration histories. Numerical analyses were carried out, varying the shear modulus of the earth fill zone and using the acceleration histories measured at the rock outcrop as input ground motions. From a comparison between the fundamental frequencies calculated by numerical analyses and those of measured records, the shear wave velocities with depth, which are closely related to shear moduli, could be estimated. It is found that the effect of different blasting types on shear wave velocity estimation for the target dam materials is negligible, and that shear wave velocity can be consistently evaluated. Furthermore, by comparing the evaluated shear wave velocity with empirical formulae from previous research, the applicability of the method was verified. Therefore, in cases of mid-to-small earth dams, where the earthquake record is not available, the shear wave velocity of earth fill materials can be reasonably evaluated using blasting vibration records obtained at the site adjacent to the dam.  相似文献   

19.
20.
Cyclic triaxial tests were performed to investigate the influence of colloidal silica grout on the deformation properties of saturated loose sand. Distinctly different deformation properties were observed between grouted and ungrouted samples. Untreated samples developed very little axial strain prior to the onset of liquefaction. However, once liquefaction was triggered, large strains occurred rapidly and the samples collapsed within a few additional loading cycles. In contrast, grouted sand samples experienced very little strain during cyclic loading. Additionally, the strain accumulated uniformly throughout loading rather than rapidly prior to collapse and the samples never collapsed. Cyclic triaxial tests were done on samples stabilized with colloidal silica at concentrations of 5, 10, 15, and 20%. In general, samples stabilized with higher concentrations of colloidal silica experienced very little strain during cyclic loading. Sands stabilized with lower concentrations tolerated cyclic loading well, but experienced slightly more strain. Thus, treatment with colloidal silica grout significantly increased the deformation resistance of loose sand to cyclic loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号