首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum height attained by a volcanic eruption cloud is principally determined by the convective buoyancy of the mixture of volcanic gas + entrained air + fine-sized pyroclasts within the cloud. The thermal energy supplied to convection processes within an eruption cloud is derived from the cooling of pyroclastic material and volcanic gases discharged by an explosive eruption. Observational data from six recent eruptions indicates that the maximum height attained by volcanic eruption clouds is positively correlated with the rate at which pyroclastic material is produced by an explosive eruption (correlation coefficient r = + 0.97). The ascent of industrial hot gas plumes is also governed by the thermal convection process. Empirical scaling relationships between plume height and thermal flux have been developed for industrial plumes. Applying these scaling relationships to volcanic eruption clouds suggests that the rate at which thermal energy is released into the atmosphere by an explosive eruption increases in an approximately linear manner as an eruption's pyroclastic production rate increases.  相似文献   

2.
Kusakabe  M.  Mizutani  Y.  Kometani  M. 《Bulletin of Volcanology》1982,45(3):203-209

Sulphur isotopic compositions of pyrite, anhydrite and native sulphur in volcanic ashes discharged by the 1979 eruption of Ontake volcano, Nagano, Japan were determined. The isotopic data indicate that sulphate in anhydrite and a part of native sulphur were produced by the disproportionation reaction of sulphite formed by dissolution of SO2 in volcanic gases into water which filled a mud reservoir probably located just below the crater zone. Some part of H2S in volcanic gases was fixed as pyrite and some was oxidised to form native sulphur. Hydrothermal alteration of country rocks to form pyrite, anhydrite and clay minerals had proceeded in the mud reservoir before eruption at temperatures ranging from 110° to 185°C which were estimated by oxygen isotopic fractionation between anhydrite and water.

  相似文献   

3.
Eighteen digital AVHRR (advanced very high resolution radiometer) data sets from NOAA-6 and NOAA-9 polar-orbiting satellites recorded between 27 March and 7 April 1986 depict the eruptive activity of Augustine volcano, located 280 km SW of Anchorage, Alaska. The synoptic view (resolution of either 1.1 or 4.4 km), frequent coverage (often twice a day), and multispectral coverage (five bands: 0.58–0.68; 0.72–1.1; 3.55–3.93; 10.5–11.3; and 11.5–12.5 m) makes the AVHRR broadly applicable to analyzing explosive eruption clouds. The small scale of the Augustine activity (column heights of 2–13 km and eruption rates of 2x106–8x107 metric tonnes/day) facilitated intensive multispectral study because the plumes generally covered areas within the 550x550 km area of one easily manipulated image field. Hourly ground weather data and twice-daily radiosonde measurements from stations surrounding the volcano plus numerous volcanological observations were made throughout the eruption, providing important ground truth with which to calibrate the satellite data. The total erupted volume is estimated to be at least 0.102 km3. The pattern of changing eruption rates determined by satellite observations generally correlate with more detailed estimates of explosion magnitudes. Multispectral processing techniques were used to distinguish eruption clouds from meteorological clouds. Variable weather during the Augustine eruption offered an opportunity to test various trial algorithms. A ratio between thermal IR channels four and five, served to delineate the ashbearing eruption plumes from ordinary clouds. Future work is needed to determine whether the successful multispectral discrimination is caused by wavelength-dependent variable emission of silicate ash or reflects a spectral role of sulfuric acid aerosol in the plume.  相似文献   

4.
This paper deals with the chemical and isotopic compositions of escaped gases from the Rehai geothermal area in Tengchong county of Yunnan Province. Results indicate that there is the mantle-derived magmatic intrusion in shallow crust at this area. Modern mantle-derived magmatic volatiles are being released currently in a steady stream by way of active faults. The escaped gases are mostly composed of CO2, together with subordinate amounts of H2S, N2, H2, CH4, SO2, CO and He. At the studied area, the north-south directed fault is the deepest, and it may be interlinked with the deep-seated thermal reservoir that would be directly recharged by the mantle-derived magmatic volatile. The He, C isotopic evidence reveals that the modern active magma beneath Rehai area may originate from the historical mantle-derived magma which caused the latest eruptive activity of volcanoes in that region.  相似文献   

5.
The mechanism of hydrogen sulfide (H2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds. Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction (BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction (TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer, indicating that the generation and accumulation of H2S have the characteristics of either a self-generated source or a near-source.  相似文献   

6.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

7.
A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity–temperature sensor, SO2 electrochemical sensor, CO2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (∼5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10–30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H2O, CO2, and SO2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H2S and H2.  相似文献   

8.
9.
This paper presents the first remote measurements of La Soufrière gas emissions since the fumarolic and seismic reactivation in 1992. The chemical composition of the plumes has been measured from May 2003 to September 2004 using an Open Path Fourier Transform InfraRed (OP-FTIR) spectrometer, up to 15 m downwind the South Crater. HCl is clearly detected (concentration between 2.4 and 12 ppmv) whereas SO2 and H2S generally remain below the detection limit of the OP-FTIR. Direct measurements of SO2 and H2S near the South Crater with a Lancom III analyzer show a fast decrease of their concentrations with the distance. Calculated Cl / S mass ratios are high: from 9.4 ± 1.7 at 15 m from the vent to 2.8 ± 0.6 at 140 m. The enrichment in HCl of the gas emitted at La Soufrière, observed since 1998, corresponds to the degassing of a magma enriched in Cl and depleted in S. This result agrees with isotopic measurements which suggest a magmatic origin of the gases. Readjustments inside the volcanic system may have taken place during the seismic activity beginning in 1992 and enhance the transfer of magmatic gases to the summit.  相似文献   

10.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

11.
We provide data concerning a weak phreatic eruption of Ekarma Volcano on Ekarma Island, in the Kurils, in June 2010. The ash plumes did not rise higher than 3 km above sea level. A preliminary estimate of the volume of erupted resurgent material (mostly tephra) is on order 2 × 105 m3. Reconstruction of the volcano??s history and the dynamics of its eruptive activity for the last 4500?C5000 years suggests that a larger eruption can occur during the next few decades that will discharge juvenile pyroclastics and/or lava.  相似文献   

12.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   

13.
Determining consistent sets of vent conditions for next expected eruptions at Vesuvius is crucial for the simulation of the sub-aerial processes originating the volcanic hazard and the eruption impact. Here we refer to the expected eruptive scales and conditions defined in the frame of the EC Exploris project, and simulate the dynamics of magma ascent along the volcanic conduit for sub-steady phases of next eruptions characterized by intensities of the Violent Strombolian (VS), Sub-Plinian 2 (SP2), and Sub-Plinian 1 (SP1) scale. Sets of conditions for the simulations are determined on the basis of the bulk of knowledge on the past history of Vesuvius [Cioni, R., Bertagnini, A., Santacroce, R., Andronico, D., Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research, this issue.]. Volatile contents (H2O and CO2) are parameterized in order to account for the uncertainty in their expected amounts for a next eruption. In all cases the flow in the conduit is found to be choked, with velocities at the conduit exit or vent corresponding to the sonic velocity in the two-phase non-equilibrium magmatic mixture. Conduit diameters and vent mixture densities are found to display minimum overlapping between the different eruptive scales, while exit gas and particle velocities, as well as vent pressures, largely overlap. Vent diameters vary from as low as about 5 m for VS eruptions, to 35–55 m for the most violent SP1 eruption scale. Vent pressures can be as low as less than 1 MPa for the lowest volatile content employed of 2 wt.% H2O and no CO2, to 7–8 MPa for highest volatile contents of 5 wt.% H2O and 2 wt.% CO2 and large eruptive scales. Gas and particle velocities at the vent range from 100–250 m/s, with a tendency to decrease, and to increase the mechanical decoupling between the phases, with increasing eruptive scale. Except for velocities, all relevant vent quantities are more sensitive to the volatile content of the discharged magma for the highest eruptive scales considered.  相似文献   

14.
This paper presents the results from the simulation of a phreatomagmatic eruption, in which the formation of the eruptive column is controlled by interaction between magma and water or ice. The process leads to intensive fragmentation of the magma and to mixing of ash and steam with ambient air. Such processes were typical of the initial phase in the April 2010 eruption of Eyjafjallajökull Volcano. It is hypothesized that phreatic explosions produce a dynamic pulsating system that consists of buoyant volumes of the mixture (thermals) that are forming at the base of the eruptive column. A 3-D simulation was used to assess two possible regimes in the evolution of the eruptive column: (1) continuous transport of the mixture into the eruptive column through its base for the case in which the thermals are generated at a high rate and (2) periodic flotation of the thermals whose diameters are comparable with that of the base of the eruptive column. It is shown that one can find a suitable selection of the initial concentrations of ash, steam, and air to achieve a satisfactory agreement between theory and actually observed heights of the gas–ash “clouds” that were formed during the Eyjafjallajökull eruption. The data for our calculations were taken from publications. We also investigated how wind and the changes in the initial parameters affect the process.  相似文献   

15.
Gas samples were collected from high-temperature, rooted summit vents at Mount St. Augustine in 1979, 1982, and 1984. All of the gas samples exhibit various degrees of disequilibrium. Thermodynamic restoration of the analyzed gases permits partial or complete removal of these disequilibrium effects and allows inference of equilibrium gas compositions. Long-term (1979–1984) degassing trends within resampled or adjacent vents are characterized by increases (from 97.4 to 99.8 mole%) in the H2O fraction and major decreases in the residual gases. Over this same period total gas HCl contents decreased by a factor of 3 to 10 while dry gas (H2O-free recalculated) HCl contents increased by a factor of 1.6 to 3. Dry gas mole proportions at these sites changed from being CO2-dominated (46% CO2, 24% H2 in 1979) to H2-dominated (49% H2, 22% CO2 in 1984). The overall trends in gas chemistry and the stable isotope patterns in gases and condensates from the summit fumaroles can be explained by progressive magmatic outgassing coupled with increasing proportions of seawater in the fumarole emissions.Studies of the gaseous emissions following the 1976 and 1986 Mount St. Augustine eruptions confirmed the Cl- and S-rich nature of the Mount St. Augustine emanations. Seawater, possibly derived from magmatic assimilation or dehydration of near-surface seawater-bearing sediments, could supply a portion of the outgassed Cl and S. Continued seawater influx through subvolcanic fractures or permeable sediments would recharge the seawater-depleted zone and provide a near-surface Cl and S source for the next eruptive cycle,Various lines of evidence support a phreatomagmatic component in the 1976 and 1986 Mount St. Augustine eruptions. We suggest that seawater may interact with magma or volcanic gases during the early explosive phase of Mount St. Augustine eruptions and that it continues to influence high-temperature fumarole emissions as the volcanic system cools.  相似文献   

16.
The gaseous products of new Tolbachik volcanoes were studied during 1975 to 1977 throughout all eruptive stages and during the post eruptive activity. In investigations the northern break-out gases emitted during the eruption from the moving and consolidated lava flows there have been detected H2O (the main component), H2, HF, HCl, SO2 and H2S, CO2, CO, NH3, CH4 and other hydrocarbons, NH4Cl predominated in compositions of condensates and subtimates on lava flows and the most characteristic microcomponents were Zn, Cu, Pb, Sn, Ag and others. Sampling of gases and condensates at the southern break-out was conducted immediately from the flowing melt. In gases there have been detected H2O (98 mol. %). HCl and H2 (0.9 mol. % each) as well as HF, SO2, H2S, CO2 and in small quantities O2 and N2, Gases reached the equilibrium state atT andP sampling and were characteristic of gas composition of the southern break-out magma. HCl, HF and H2SO4 were predominant during condensate and sublimate mineralization. The major raicrocomponents were represented by Pt, Sb, As, Zn, Cu, Pb, Ni, Co and others. Comparison of compositions of gases and of products of their reactions at the northern and at the southern break-outs allows us to assume the presence of the deeper magma source at the northern break-out and of shallow magma source at the southern break-out.  相似文献   

17.
On July 8, 1976, eruptive activity broke out at la Soufrière de Guadeloupe (F.W.I) after about one year of increasing seismic activity. Seismic activity continued to increase until August 1976, reaching more than 1500 events (a 200-fold increase over the preceding quiet period of a few years) and an energy output of about 1017 ergs in a day. A total of 26 major phreatic eruptions similar to the July 8 outburst took place during an eight-months period. The steam blasts that characterized the eruptions gave rise to particle- and sometimes block-charged plumes that deposited an estimated 106 m3 of solids. The H2O-rich gases emitted during the blasts presumably contained other gases (H2S, SO2, CO2...) that were partly adsorbed on solid particles. All material was erupted at temperatures of the order of 100° to 200°C.The observation of vertical migration of earthquake foci in less than a few hours and over about 6 km depth, and of abnormal variations of the geomagnetic field, indicate a deep energy source for the phreatic eruptions. A small proportion of the gases adsorbed on solid particles had a magmatic origin. However, most of the steam and the tephra seemed to originate from superficial levels of a hydrothermal system. Similar phreatic eruptions have occurred several times in recorded history. In the case of la Soufrière, the origin of the phreatic eruptions is best described by an abnormal energy input (versus steady-state) from a crustal magma chamber. The occurrence of truly magmatic eruptions is presumably inhibited by an extensive hydrothermal system. The abrupt release of more power from the magma chamber could have resulted in an explosive pyroclastic eruption.Substantial improvement of the Guadeloupe volcano observatory has followed the 1975–1977 crisis. Permanent telemetered geophysical networks and regular geochemical observations have provided a five year data base of the volcano behavior in its noneruptive state which can be compared to crisis situations.  相似文献   

18.
The 79 ad Plinian eruption of Vesuvius produced first a white pumice fallout from a high steady eruptive column, and then a grey pumice fallout originating from an oscillatory eruptive column with several partial column collapse events after which there was a total column collapse. This first total collapse was followed by renewed Plinian activity and produced the last grey pumice (GP) fallout deposit of the eruption. Textural characteristics (vesicularity and microcrystallinity) of a complete sequence of the pumice fallout deposits are presented along with the major element compositions and residual volatile contents (H2O, Cl) to constrain the degassing processes and the eruptive dynamics. Large variations in residual volatile contents exist between the different eruptive units. Textural features also strongly differ between white and grey pumices, but also within the grey pumices. The degassing processes were thus highly heterogeneous. We propose a new model of the 79 ad eruption in which pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical controls on the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior to eruption. The white pumice eruptive units represent a typical closed-system degassing evolution, whereas the first grey pumice one, stored under similar pre-eruptive saturation conditions, follows a particular open-system degassing evolution. We suggest that the oscillatory regime that dominated the grey pumice eruptive phase is linked to pre-eruptive water undersaturation of most of the grey magma, and the associated time delays necessary for H2O exsolution. We also suggest that the high residual H2O content of the last grey pumice, deposited after the renewal of Plinian activity following the first total column collapse event, is due to syn-eruptive saturation of GP magma and reduced H2O exsolution efficiency resulting from speciation of dissolved H2O in the melt.  相似文献   

19.
Phreatic eruptions occurred at the Meakandake volcano in 1988, 1996, 1998, 2006, and 2008. We conducted geochemical surveillance that included measurements of temperature, SO2 emission rates, and volcanic gas composition from 2003 to 2008 at the Nakamachineshiri (NM), Northwest (NW), and Akanuma (AK) fumarolic areas, and the 96–1 vent, where historical eruptions had occurred. The elemental compositions of the gases discharged from the different areas are similar compared with the large variations observed in volcanic gases discharged from subduction zones. All the gases showed high apparent equilibrium temperatures, suggesting that all these gases originated from a common magmatic gas. The gases discharged from each area also exhibited different characteristics, which are probably the results of differences in the conditions of meteoric water mixing, quenching of chemical reactions, and vapor-liquid separation. The highest apparent equilibrium temperatures (about 500°C) were observed in the case of NW fumarolic gases, despite the low outlet temperature of about 100°C at these fumaroles. Since the NW fumaroles were formed as a result of the 2006 phreatic eruption, the high-temperature gas supply to the NW fumarole suggests that the phreatic eruption was caused by the ascent of high-temperature magmatic gases. The temperatures, compositions, and emission rates of the NM and 96–1 gases did not show any appreciable change after the 2006 eruption, indicating that each fumarolic system had a separate magmatic-hydrothermal system. The temperatures, compositions, and emission rates of the NM fumarolic gases were apparently constant, and these fumaroles are inferred to be formed by the evaporation of a hydrothermal system with a constant temperature of about 300°C. The 96–1 gas compositions showed large changes during continuous temperature decrease from 390° to 190°C occurred from 2003 to 2008, but the sulfur gas emission rates were almost constant at about four tons/day. At the 96–1 vent, the SO2/H2S ratio decreased, while the H2/H2O ratio remained almost constant; this was probably caused by the rock-buffer controlled chemical reaction during the temperature decrease.  相似文献   

20.
Improved prediction and tracking of volcanic ash clouds   总被引:3,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号