首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
收集了湖北省数字测震台网2007—2015年记录到的数字地震波形,利用震相清晰的台站测定了地方震震级,并计算了其与中国地震台网中心公布震级的偏差.在此基础上,以每个数字测震台站为中心,按照每30°为一个区间,将每个台站记录到的地震事件分为12个区间,对每个区间的平均震级偏差和标准离差予以统计分析.结果显示,除去24个无地震事件区间,300个区间的平均震级偏差中,81.7%的偏差小于0.3;再除去14个样本数为1的区间,其余286个区间的方位标准离差中,98.3%的离差小于0.5.经校正后各区间的平均震级偏差和方位标准离差均有所下降,表明地震传播方位对地方震震级测定的影响有所降低.因此,针对数字测震台站对不同方位地震所测定的震级偏差存在的差异进行相应校正是必要且有意义的.   相似文献   

2.
The paper presents the method of local magnitude determination used at Polish seismic stations to report events originating in one of the four regions of induced seismicity in Poland or its immediate vicinity. The method is based on recalculation of the seismic moment into magnitude, whereas the seismic moment is obtained from spectral analysis. The method has been introduced at Polish seismic stations in the late 1990s but as of yet had not been described in full because magnitude discrepancies have been found between the results of the individual stations. The authors have performed statistics of these differences, provide their explanation and calculate station corrections for each station and each event source region. The limitations of the method are also discussed. The method is found to be a good and reliable method of local magnitude determination provided the limitations are observed and station correction applied.  相似文献   

3.
使用陕西数字地震台网数字地震记录资料,以台网平均震级为标准震级,分析各子台的震级偏差。结果表明,在150km震中距范围,子台测定震级偏差随震中距增大而减小,大于150km,震级偏差不明显。合阳、蒲城、华阴子台台基影响为正值,安康、汉中、彬县子台台基影响为负值,其他子台影响较小。震级偏差随方位角变化是明显的,且具有区域性相似特征。子台方位的震级偏差校正,台网震级标准误差显著改善样本数占81.7%,平均标准误差由0.243下降到0.168。  相似文献   

4.
不同标度震级关系和台基影响问题探讨   总被引:2,自引:1,他引:2  
利用近年中国数字地震台网观测报告中的中国及邻区地震目录资料,取能够同时计算面波震级MS和近震震级ML的地震,拟合出2种震级之间的关系,发现与过去使用30余年的换算公式存在系统差别。考虑现代化地震数字观测系统有动态范围大、频带宽、台站多、覆盖区域广、测定精度高的特点,由此拟合的关系应当更可靠。考虑不同误差因素统计面波震级MS和近震震级ML的关系表明,2种震级之间换算和不换算的差别并不大,因此建议MS和ML震级之间不换算为宜。分析地震台站的场地响应发现:一些基岩台的放大因子在1附近,场地响应不随频率变化;处于沉积土层的台站,放大因子在低频段大于1,高频段小于1;还有一些台站在某个频段范围大于1,或者小于1。另外,沉积土层台站的单台震级和台网平均震级差也随周期增大,呈现由负到正的增长趋势。看来并不存在固定的台站校正系数,因此不能把台站校正作为提高震级测定精度的方法。  相似文献   

5.
选取了2002—2005年天津台网记录的100个地震速报事件,利用NEDisa软件重新进行分析处理,根据定位结果对天津各台站的震级数据资料进行整理、归类分析,计算出每个地震各台站与台网平均震级的偏差和各台的多个地震的震级平均偏差。根据速度震级公式中震级的影响因素,主要从量规函数和台基两方面进行震级偏差原因分析,给出了各台的台基校正值,台基校正后震级偏差统计表。结果显示天津台网现采用的量规函数在震中距0~20 km内对震级偏差稍有影响,其他范围内影响不大;而台基对震级偏差影响较大,对天津台网各子台进行台基校正是很必要的。  相似文献   

6.
Based on the earthquake catalog reported by the Chinese digital seismic network in recent years, we select the earthquakes with both surface wave magnitude and local magnitude and fit them into a relationship between the two magnitudes. The systematic difference is found from the formula which has been used for 30 years. Because of a large dynamic range and wide frequency range of the current digital observation system, in addition to a larger number of stations and earthquakes being used compared to before, the relation obtained in this paper seems more reliable. Our calculation shows that there is no significant difference before and after magnitude conversion so we suggest the abandonment of magnitude conversion. The site response of a station consists of amplification at different frequencies. The amplification is equal to about 1 and changes little with frequency at stations located on basement rock, and it is greater than 1 at low frequency ranges and less than 1 at high frequency ranges at stations located on sediment layers. The difference between magnitudes from single station located on sediment layer and the average magnitude from the whole network increases from negative to positive with period. It seems that there is no fixed station correction factor and the station correction method does not work to improve the accuracy and magnitude estimates.  相似文献   

7.
选用广西数字化测震台网2008—2020年记录的广西及邻区1 251个ML ≥ 2.0地震事件震相资料,采用震级残差统计方法,获取广西51个地震台单台震级与台网平均震级的平均偏差和标准差,分析观测仪器类型、台基场地响应和震中距等因素对震级偏差的影响,进而提出台基校正值,修正区域量规函数。结果发现,南宁、天等、北海等15个地震台站的震级偏大,桂林、贺州、天峨等16个地震台站的震级偏小,崇左、灵山、平果等20个地震台站震级适中;在单台震级共14 784个样本中,震级偏差集中在-0.4—0.4,呈正态分布;震级偏差受台基场地响应和震中距因素影响明显,当场地响应值大于1.0时震级偏大,小于1.0时震级偏小,等于1.0时震级较为适合,当震中距在70 km范围内时单台震级偏小,当震中距在70—300 km时单台震级较为适合,当震中距在300—550 km时,单台震级稍有偏大。修正后的区域量规函数和台基校正值,可有效提高广西测震台网测定震级的准确性。  相似文献   

8.
烈度计台与测震台的布设环境、仪器类型不同,所测定的震级值存在一定差异。收集2017-2019年川滇地区301个烈度计台站记录的46次ML 3.0以上地震,进行震级校正。统计烈度计实测震级值与测震台网平均震级值的偏差,对原量规函数进行修正,进而做台站校正。综合修正后,利用量规函数和台站校正值重新计算烈度计震级,结果表明:在震中100 km范围内,烈度计测定震级偏差平均值由校正前的0.145降低至0.033,标准差由0.382降低至0.295,离散度减小;校正后的烈度计震级结果较优,说明本研究获得的量规函数和台站校正值更加适用于川滇地区烈度计台站的震级计算。  相似文献   

9.
分析了巴塘国家基本数字地震台2009年1月初至2012年12月底测定的ML≥2.5级的近震544个,与中国地震台网中心(CSN)发布的ML震级之间的偏差,计算出了震级偏差程度,本台近三分之一地震震级偏差达0.3级,文章着重从地震发生的方位角不同和地动位移不同,找出了震级相差很大的原因,最后给出了本台的校正值。通过本台校证,震级接近了中国地震台网中心发布的ML震级,提高了本台地震震级测定的准确性。  相似文献   

10.
11.
Hindukush is an active subduction zone where at least one earthquake occurs on daily basis. For seismic hazard studies, it is important to develop a local magnitude scale using the data of local seismic network. We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies (CES) for a period of three years, i.e. 2015–2017. A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater, was used with hypocentral distance less than 600 km. Magnitude scale developed by using this data comes to be ML = logA + 0.929logr + 0.00298r – 1.84. The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab. It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions, hence, seismically more active as well. We have calculated station correction factors for our network. Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure. Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared, it showed that a variance reduction of 44.1% was achieved. Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km. Newly developed magnitude scale will help in homogenization of earthquake catalog. It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale.  相似文献   

12.
以河北测震台网记录的河北及周边地区地震事件为数据源,计算单台测定震级与台网平均震级的平均偏差、标准偏差,采用统计、对比、归纳分析等方法,分析偏差的分布情况,依据震中距分段计算平均偏差,得到震级偏差的分布规律及相应校正值;最后通过对量规函数、台基岩性等进行校正,对比拟合出符合河北台站特点的新量规函数,使误差精度在规定范围之内。  相似文献   

13.
中国地震台网中心提供了一个试算的大连地震台面波震级台基校正模型。基于该模型,我们对1985年至2003年大连地震台记录的共计1357次地震进行了面波震级台基校正试算,按照不同震中距、不同震级、不同方位角分别进行了讨论,得到大多数情况下大连地震台单台实测面波震级小于国家台网面波震级的结论。  相似文献   

14.
The attenuation characteristics and site response are calculated respectively for each individual tectonic unit in Sichuan (Sichuan Basin,west Sichuan plateau and Panzhihua-Xichang area),using digital waveform data recorded by regional seismic networks and relevant seismic phase data collected from China Seismograph Network.The frequency dependent Q(f) is obtained by the iterative grid-search technique described by Atkinson and Mereu based on trilinear geometrical spreading model.The source spectra are determined by the model of Brune and the site responses of seismic stations are derived by Moya's method using genetic algorithms.Comparison to conventional ML estimates shows that the network local magnitude bias is quite significant at low and intermediate magnitudes.The bias at the jth station for the ith event is defined as ΔMij=Mij-Mi, where ΔMij is the station magnitude and Mi the network-average value.For comparison,we mapped the spatial distribution of biases by digital seismograms recorded from 10535 earthquakes of magnitude 2.5≤ML≤4.9 that occurred in Sichuan from January 1,2009 to June 30,2015.Based on the above data,the attenuation characteristics,site response and their effects on magnitude determination in Sichuan are analyzed.Our results demonstrate that the associated model for regional quality factor for frequencies can be expressed as Q1(f)=450.6f0.513 4 for Sichuan Basin,Q2(f)=136.6f0.581 3 for west Sichuan Plateau and Q3(f)=101.9f0.666 3 for Panzhihua-Xichang area.Site response results indicate that different stations show different amplifications.Maps of biases appear to be different,but with similar dominant spatial distribution.For stations in Sichuan Basin,their greater magnitudes are functions of low attenuation in structure and amplification effects of both seismic stations and basin effects.For stations in west Sichuan Plateau,the possible causes of these lower magnitudes are severe dependence upon source region due to extreme lateral variations in either structure or path effect attenuation.For stations in Panzhihua-Xichang area,broken medium caused by strong tectonic activity or large earthquakes and heat flow up-welling along active faults may be the main reasons of low magnitude values when earthquakes occur in western Sichuan and eastern Tibetan region.And the greater magnitudes for earthquakes along the Longmen Mountains appear to be well correlated with edge effect of sedimentary basin on strong ground motion.In our study,stations magnitude biases appear to be extremely correlated with tectonic structures and different regions when seismic rays passing through,magnitudes are affected significantly by lateral variations in attenuation characters rather than site responses.  相似文献   

15.
面波震级和它的台基校正值   总被引:8,自引:5,他引:8       下载免费PDF全文
郭履灿  庞明虎 《地震学报》1981,3(3):312-320
本文叙述了我国现行的北京地震台面波震级 Ms 公式的由来, 所使用的公式为Ms=log(A/T)max+(△)系以古登堡-里克特(Gutenberg-Richter)对帕萨迪纳(Pasadena)地震台测定的面波震级为标准, 由国际上与该标准一致的六个著名地震台的面波平均震级制定出北京地震台测定面波震级的起算函数(△).当震中距离△=8-130得到公式(△)=(1.660.09)log△+(3.500.14)对于△=130-180之间的公式, 我们结合中国地震观测的实际情况将吸收系数项作了改进, 求得半经验半理论公式为(△)=6.775+1/2[(2.147e-0.04465△+1.325)(△-90)10-2logsin△+1/3(log△-1.954)]为了提高面波定震级的精确度, 将北京地震台的面波震级标准推广到全国十二个基准台, 利用360个地震的数据算出了各台的台基校正值, 提高了测定面波震级的一致性.   相似文献   

16.
地震预警系统对地震数据处理的实时性要求极高。其系统数据来源除布设在基岩的测震台站外,还有大量非基岩场地的强震动台站和地震烈度仪台站,其场地影响不容忽视。为了考虑震级估算和地震动场预测中的场地影响,需实时对各种场地条件下的地震波形进行校正。目前处理一般使用某个标量来表征场地放大效应。本文采用一种实时的场地校正方法,首先计算目标场地与参考场地的谱比,然后通过最小二乘法、双线性变换将谱比转化为因果递归的无限冲激响应(IIR)时域滤波器,之后可以应用该滤波器进行实时场地校正。该方法考虑了场地放大系数的频率依赖性,相比于标量校正提高了准确度。应用我国四川和日本部分强震动台站记录,验证并讨论了这种实时场地校正方法在地震预警中的应用效果。  相似文献   

17.
江西地区地方性震级的量规函数与台基校正值研究   总被引:1,自引:0,他引:1  
本文采用《江西测震台网地震观测报告》,选取2007年10月~2015年12月所记录的499次M_L≥1.5地震事件,对各子台测定震级与台网平均震级偏差进行定量的统计分析,从震级偏差频次分布、量规函数、台基、方位角等方面分析产生震级偏差的原因。在对量规函数和台基进行校正后,震级偏差绝对值在0.2以内的样本数达到了68.6%,并给出了适合江西地区的量规函数和台基校正值。  相似文献   

18.
对内蒙古地震台网和呼和浩特遥测地震台网测定的近震震级ML的偏差进行了统计研究,结果表明;两者之间的ML震级标度基本一致。由于ML震级公式本身的不均匀性,对于网外地震,遥测台网ML震级需加适量校正值。  相似文献   

19.
鲍海英  李飞  瞿旻  卜玉菲 《中国地震》2019,35(2):327-336
利用江苏地电台站的地电场和地磁数据,计算各个台站的极化方位角和渗流方位角,其中,渗流方位角分别采用谐波振幅和峰谷值2种方法进行计算,并对计算结果进行分析。结果表明:(1)新沂台和南京台由于台站覆盖层较浅,极化方位角存在线性极化和较多的非线性极化现象;而高邮台和海安台由于覆盖层较厚,极化方位角多数存在非线性极化现象。(2)用峰谷值法与用谐波振幅法计算所得的渗流方位角,两者相差不大,与理想模型间的差距也较小;而极化方位角与模型差距较大。因此,用渗流方位角尝试进行地震映震关系研究是基本可靠的。(3)高邮台的渗流方位角与高邮-宝应M_S4.9地震间具有较好的对应关系。  相似文献   

20.
—?The first step to identify and locate a seismic event is the association of observed onsets with common seismic sources. This is especially important in the context of monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT) at the International Data Center (IDC) being developed in Vienna, Austria. Well-defined slowness measurements are very useful for associating seismic phases to presumed seismic events.¶Shortly after installation of the first seismic arrays, systematic discrepancies between measured and theoretically predicted slowness values were observed, and therefore slowness measurements of seismic stations should be calibrated. The observed slownesses measured with small aperture arrays, some of which will be included in the International Monitoring System (IMS) now being implemented for verifying compliance with the CTBT, show large scatter and deviations from theoretically expected values. However, in this study a method is presented, by which mean slowness corrections can be derived, which show relatively stable patterns specific to each array.¶The correction of measured slowness values of these arrays clearly improved the single array location capabilities. Applying slowness corrections with seismic phases observed by ARCES, FINES, GERES, and NORES, and associated to seismic events in the bulletins of the prototype International Data Center (pIDC) in Arlington, VA, also clearly demonstrates the advantages of these corrections. For arrays with large slowness deviations that are due to the influence of a dipping layer, the corrections were modeled with a sine function depending on the measured azimuth. In addition, the measured values can be weighted with the corresponding uncertainties known from the process of deriving the mean corrections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号