首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We report further UKIRT spectroscopic observations of Sakurai's object (V4334 Sgr) made in 1999 April/May in the 1–4.75 μm range, and find that the emission is dominated by amorphous carbon at T d~600 K. The estimated maximum grain size is 0.6 μm, and the mass lower limit is 1.7±0.2×10−8 M to 8.9±0.6×10−7 M for distances of 1.1–8 kpc. For 3.8 kpc the mass is 2.0±0.1×10−7 M.
We also report strong He  i emission at 1.083 μm, in contrast to the strong absorption in this line in 1998. We conclude that the excitation is collisional, and is probably caused by a wind, consistent with the P Cygni profile observed by Eyres et al. in 1998.  相似文献   

3.
IR spectroscopy and photometry in the 0.8–2.4 and 3–14 mregions are reported for seven dates between March 21 1998 and July20 2000 UT. The shorter wavelength region displays a smooth continuum increasing to longerwavelengths that is indicative of the Wien tail of a Planck function. Only theHe I 1.0830 line is present early and it shows a P-Cygni profile which laterdisappears. The long wave spectra show a smooth continuum between 3 and 13m that was well fit by a gray body at 1000 K. A weak, unidentifiedemission feature appears between 8 and 10 m.  相似文献   

4.
5.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

6.
We report the possible detection of V4334 Sgr (Sakurai's Object) at 450 and 850 μm with SCUBA on the James Clerk Maxwell Telescope. The submillimetre photometry, combined with a  1–5 μm  spectrum and  8–10 μm  photometry obtained nearly contemporaneously, suggests that the submillimetre emission originates in material ejected during the 1995 event. The dust mass is a  few×10-7 M  , the average mass-loss in the form of dust is  few×10-8 M yr-1  , and the integrated luminosity is  log( L /L)=3.66  for a distance of 2 kpc. The ejected shell had angular diameter ∼55 mas in 2001 August, and should by now be resolvable in the mid-infrared by  8–10 m  class telescopes.  相似文献   

7.
The central star V4334 Sgr (Sakurai's Object) of the planetary nebula PN G010.4+04.4 underwent in 1995–1996 the rare event of a very late helium flash. It represents only one out of two such events during the era of modern astronomy (the other event was V605 Aql = Nova Aql 1919). All the other prominent objects of that type originate from events occurring several thousands of years ago (e.g. A30, A78). Thus it is of special interest for stellar evolution theory to model the detailed observations obtained during the last four years. Those models depend essentially on basic stellar parameters like effective temperature, surface gravity and stellar radius. Most of them depend strongly on the assumed distance to the object. Some models may give some constraints on this parameter, but most of them depend on the assumption as input parameter. Hence to determine a reliable distance is of considerable significance. This should be obtained through models that give us lower and upper boundaries, or through means which are independent of models. The detailed review, by using every kind of determination available up to now, leads to a Galactic foreground extinction of E B–V =0m75 ±0.05 and a distance of D = 2.0-0.6 +1.0 kpc.  相似文献   

8.
Using a Monte Carlo method, we derive spectra arising from Comptonization taking place close to a Kerr black hole. We consider a model consisting of a hot thermal corona Comptonizing seed photons emitted by a cold accretion disc. We find that general relativistic effects are crucial for the emerging spectra in models, which involve significant contribution of radiation produced in the black hole ergosphere. As a result of this contribution, spectra of hard X-ray emission produced in the vicinity of a rapidly rotating black hole strongly depend on the inclination of the line of sight, with larger inclinations corresponding to harder spectra. Remarkably, such anisotropy could be responsible for properties of the X-ray spectra of Seyfert galaxies, which appear to be intrinsically harder in type 2 objects than in type 1, as reported recently.  相似文献   

9.
10.
11.
12.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

13.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

14.
15.
We describe our ongoing program of HST observations of Sakurai's Object(V4334 Sgr). Direct WFPC2 imaging from August 1996 through August 2000 revealsno transient features (such as light echoes), and documents the decline of thestar to below 24th visual magnitude in 2000. The surrounding planetary nebulahas shown no changes from 1996 through 2000. There are no obvious peculiarfeatures (such as blobs or knots) in the immediate vicinity of the star. Wealso have in place a target-of-opportunity program to obtain UV spectra withHST in the event that the star begins to retrace its evolution back to highsurface temperature. We also present older HST FOC imaging of V605 Aql. The central object is aresolved nebula that emits in [O III] (but not in hydrogen), whose 0.6diameter is consistent with a dust cloud ejected during the 1919 outburst. Thecentral star itself is not seen due to its being embedded in the nebula.Several other central stars (including H 3-75, IC 2120, and Abell 14) havelate-type nuclei and no evidence for hot companions. They may be furthercandidates for born-again red-giant nuclei.  相似文献   

16.
We investigate how the presence of a non-thermal tail beyond a Maxwellian electron distribution affects the synchrotron process as well as Comptonization in plasmas with parameters typical for accretion flows on to black holes. We find that the presence of the tail can significantly increase the net (after accounting for self-absorption) cyclo-synchrotron emission of the plasma, which then provides seed photons for Compton upscattering. Thus, the luminosity in the thermally Comptonized spectrum is enhanced as well. The importance of these effects increases with both increasing Eddington ratio and black hole mass. The enhancement of the Comptonized synchrotron luminosity can be as large as ∼103 and ∼105 for stellar and supermassive black holes, respectively, when the energy content in the non-thermal tail is 1 per cent.
The presence of the tail only weakly hardens the thermal Comptonization spectrum but it leads to the formation of a high-energy tail beyond the thermal cut-off, which two effects are independent of the nature of the seed photons. Since observations of high-energy tails in Comptonization spectra can constrain the non-thermal tails in the electron distribution and thus the Comptonized synchrotron luminosity, they provide upper limits on the strength of magnetic fields in accretion flows. In particular, the measurement of an MeV tail in the hard state of Cyg X-1 by McConnell et al. implies the magnetic field strength in this source to be at most an order of magnitude below equipartition.  相似文献   

17.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

18.
19.
The high-energy continuum in Seyfert galaxies and galactic black hole candidates is likely to be produced by a thermal plasma. There are difficulties in understanding what can keep the plasma thermal, especially during fast variations of the emitted flux. Particle–particle collisions are too inefficient in hot and rarefied plasmas, and a faster process is called for. We show that cyclo-synchrotron absorption can be such a process: mildly relativistic electrons thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium function is Maxwellian at low energies, with a high-energy tail when Compton cooling is important. Assuming that electrons emit completely self-absorbed synchrotron radiation and at the same time Compton scatter their own cyclo-synchrotron radiation and ambient UV photons, we calculate the time-dependent behaviour of the electron distribution function, and the final radiation spectra. In some cases, the 2–10 keV spectra are found to be dominated by the thermal synchrotron self-Compton process rather than by thermal Comptonization of UV disc radiation.  相似文献   

20.
The interacting binary white dwarf (AM CVn) systems HM Cnc and V407 have orbital periods of 5.4 and 9.5 min, respectively. The two systems are characterized by an 'on/off' behaviour in the X-ray light curve, and optical light curves that are nearly sinusoidal and which lead the X-ray light curves in phase by about 0.2 in both systems. Of the models that have been proposed to explain the observations, the one that seems to require the least fine-tuning is the direct impact model of Marsh & Steeghs. In this model, the white dwarf primary is large enough relative to the semimajor axis that the accretion stream impacts the surface of the primary white dwarf directly without forming an accretion disc. Marsh & Steeghs proposed that in this situation there could be a flow setup around the equator with a decreasing surface temperature, the further one measured from the impact point. In this study, we estimate the light curves that might result from such a temperature distribution, and find them to be reasonable approximations to the observations. One unexpected result is that two distinct X-ray spots must exist to match the shape of the X-ray light curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号